
UNIVERSITÉ LIBRE DE BRUXELLES

Ecole Polytechnique de Bruxelles

IRIDIA - Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

A modular approach to the automatic design
of control software for robot swarms

From a novel perspective on the reality gap to AutoMoDe

Gianpiero FRANCESCA

Promoteur de Thèse:
Prof. Mauro BIRATTARI

Thèse présentée en vue de l’obtention du titre de
Docteur en Sciences de l’Ingénieur

Année académique 2016-2017

to Maria

The thesis

The reality gap problem bears a strong resemblance with the generaliza-
tion problem experienced in supervised learning.

This resemblance can be exploited to conceive a novel modular approach
to the automatic design of control software for robot swarms.

This novel approach appears to be more robust to the reality gap than the
classical evolutionary robotics approach.

Summary

The main issue in swarm robotics is to design the behavior of the individual robots
so that a desired collective behavior is achieved. A promising alternative to the
classical trial-and-error design approach is to rely on automatic design methods. In
an automatic design method, the problem of designing the control software for a
robot swarm is cast into an optimization problem: the different design choices de-
fine a search space that is explored using an optimization algorithm. Most of the
automatic design methods proposed so far belong to the framework of evolution-
ary robotics. Traditionally, in evolutionary robotics the control software is based on
artificial neural networks and is optimized automatically via an evolutionary algo-
rithm, following a process inspired by natural evolution. Evolutionary robotics has
been successfully adopted to design robot swarms that perform various tasks. The
results achieved show that automatic design is a viable and promising approach to
designing the control software of robot swarms. Despite these successes, a widely
recognized problem of evolutionary robotics is the difficulty to overcome the reality
gap, that is, having a seamless transition from simulation to the real world.

In this thesis, we aim at conceiving an effective automatic design approach that
is able to deliver robot swarms that have high performance once deployed in the
real world. To this, we consider the major problem in the automatic design of robot
swarms: the reality gap problem. We analyze the reality gap problem from a ma-
chine learning perspective. We show that the reality gap problem bears a strong
resemblance to the generalization problem encountered in supervised learning. By
casting the reality gap problem into the bias-variance tradeoff, we show that the
inability to overcome the reality gap experienced in evolutionary robotics could
be explained by the excessive representational power of the control architecture
adopted. Consequently, we propose AutoMoDe, a novel automatic design approach
that adopts a control architecture with low representational power. AutoMoDe de-
signs software in the form of a probabilistic finite state machine that is composed
automatically starting from a number of pre-existing parametric modules.

In the experimental analysis presented in this thesis, we show that adopting a

vii

viii

control architecture that features a low representational power is beneficial: Auto-
MoDe performs better than an evolutionary approach. Moreover, AutoMoDe is able
to design robot swarms that perform better that the ones designed by human design-
ers. AutoMoDe is the first automatic design approach that it is shown to outperform
human designers in a controlled experiment.

Original contributions

The following is a summary of the original contributions proposed in this thesis:

The theoretical framework: We define the theoretical framework in which the real-
ity gap is described and analyzed using a machine learning perspective. In this
perspective, the reality gap bears a strong resemblance with the generalization
problem experienced in supervised learning and it can be cast in terms of the bias-
variance tradeoff.

Critical review of the current practice in the design of robot swarms: We provide
an overview of the state of the art in the design of robot swarms that highlights the
lack of a common empirical practice. We discuss the challenges to be overcome to
establish a proper empirical practice for the domain of the design of robot swarms.

Formal definition of a reference model: We provide the first formal definition of a
reference model in the domain of swarm robotics. The reference model formally
defines the capabilities, in terms of sensors and actuators, that the robotic platform
provides to the control software and it allows for a fair comparison of different
design methods or different control software implementations. The concept of
reference model is of general relevance for swarm robotics.

Introduction of AutoMoDe: We introduce AutoMoDe, a novel automatic design
approach that, following the precepts of the bias-variance tradeoff, features a con-
trol architecture with low representational power.

Definition of design methods: We define five design methods: two specializations
of AutoMoDe called Vanilla and Chocolate, an evolutionary design method
called EvoStick, and two manual methods called U-Human and C-Human.

Definition of an empirical practice: We define an empirical practice that allows for
a fair comparison of a number of design methods on different swarm robotics
tasks.

Robot experiments: We present empirical analyses in which robot experiments play
a prominent role. The results presented in this thesis have been built upon over

ix

x

six hundred runs with robot swarms.

Statement

This thesis presents an original work that has never been submitted to Université
Libre de Bruxelles or any other institution for the award of a Doctoral degree. Some
parts of this thesis are based on a number of peer-reviewed articles that the author,
together with other co-workers, has published in the scientific literature.

The review and the critique of the literature presented in Chapter 2 is based on:

Francesca, G. and Birattari, M. (2016). Automatic design of robot swarms:
achievements and challenges. Frontiers in Robotics and AI, 3(29):1–9.

Chapter 3 (the theoretical framework and the definition of AutoMoDe) and Chap-
ter 4 (the description of Vanilla and the experimental results) are based on:

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., and Birattari, M. (2014b).
AutoMoDe: A novel approach to the automatic design of control software for
robot swarms. Swarm Intelligence, 8(2):89–112.

Birattari, M., Delhaisse, B., Francesca, G., and Kerdoncuff, Y. (2016). Observing
the effects of overdesign in the automatic design of control software for robot
swarms. In Dorigo, M., Birattari, M., Li, X., López-Ibáñez, M., Ohkura, K.,
Pinciroli, C., and Stützle, T., editors, Swarm Intelligence, ANTS 2016, volume
9882 of LNCS, pages 149–160. Springer, Berlin, Germany.

The definition of Chocolate and the experimental results presented in Chapter 5
are based on:

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn,
G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Trianni, V., and Birattari,
M. (2014b). An experiment in automatic design of robot swarms. In Dorigo,
M., Birattari, M., Garnier, S., Hamann, H., Montes de Oca, M., Solnon, C., and
Stützle, T., editors, Swarm Intelligence, ANTS 2014, volume 8667 of LNCS, pages
25–37. Springer, Berlin, Germany.

xi

xii

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn,
G., Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F., Trianni, V.,
and Birattari, M. (2015). AutoMoDe-Chocolate: automatic design of control
software for robot swarms. Swarm Intelligence, 9(2–3):125–152.

Moreover, the research work presented in this thesis resulted in a number of publi-
cations on tools that have been developed, together with co-workers, by the author.

The software infrastructure to use the e-puck robots is described in:

Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M.,
and Birattari, M. (2015). The TAM: abstracting complex tasks in swarm robotics
research. Swarm Intelligence, 9(1):1–22.

Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., and Birattari, M. (2015).
Software infrastructure for e-puck (and TAM). Tech. Report 2015-004, IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium.

The tracking system to calculate the positions of e-puck robots in the experimental
arena is described in:

Stranieri, A., Turgut, A., Salvaro, M., Garattoni, L., Francesca, G., Reina, A.,
Dorigo, M., and Birattari, M. (2013). IRIDIA’s arena tracking system. Technical
Report TR/IRIDIA/2013-013, IRIDIA, Université Libre de Bruxelles, Belgium.

Reina, A., Salvaro, M., Francesca, G., Garattoni, L., Pinciroli, C., Dorigo, M.,
and Birattari, M. (2015b). Augmented reality for robots: Virtual sensing tech-
nology applied to a swarm of e-pucks. In NASA/ESA Conference on Adaptive
Hardware and Systems, pages 1–6.

Finally, implementations of AutoMoDe (Vanilla and Chocolate) and EvoStick

have been released as opensource projects. These implementations are improved
versions of the ones used for the experiments presented in this thesis. These imple-
mentations are described in:

Ligot, A., Hasselmann, K., Delhaisse, B., Garattoni, L., Francesca, G., and Bi-
rattari, M. (2017). AutoMoDe and NEAT implementations for the e-puck robot
in ARGoS3. Technical Report TR/IRIDIA/2017-002, IRIDIA, Université Libre
de Bruxelles, Brussels, Belgium.

xiii

xiv

Acknowledgments

I acknowledge support from the following projects: Meta-X, founded by the Scien-
tific Research Directorate of the French Community of Belgium; COMEX, (P7/36)
funded by the Interuniversity Attraction Poles Programme of the Belgian Science
Policy Office; E-SWARM, funded by the European Research Council (ERC) under the
European Union’s Advanced Grants program (grant agreement No 246939); DEMI-
URGE, funded by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 681872).

I wish to thank my supervisor and mentor Dr. Mauro Birattari. It has been an honor
to be his first PhD student. Mauro has taught me the love for research: his passion
and entusiasm were contagious and they were a source of motivation in the difficult
times. I deeply appreciate the time and effort Mauro invested in me. We spent count-
less hours in discussions and brainstorming. That is what supervisors do. Mauro
never stopped there and, along with purely intellectual activities, Mauro supported
me in many manual activities such as lasercutting, robot placing, robot repairing,
arena building, etc. Mauro has taught me how important is to deliver a clear and
coherent message that is tailored for the particular audience to be targeted. Mauro
has taught me that a good researcher is also a kind and humble person. For these
lessons and many other life lessons that I do not specify here, thank you Mauro!

The research presented in this thesis benefited from the interaction, the contribu-
tion, and the help of many researchers. I wish to thank Dr. Vito Trianni for sharing
with me his immense knowledge on evolutionary swarm robotics. I wish to thank
Prof. Marco Dorigo for his extremely valuable feedback on my research. Marco’s
comments have been always fruitful: for instance, the idea of comparing automatic
and manual design methods originated from a discussion we had in January 2014.
I wish to thank Dr. Manuele Brambilla for his support, especially during the initial
phases of my PhD studies, and for suggesting the name AutoMoDe. As my research
intersected with optimization, I wish to thank Prof. Thomas Stützle for clearing my
doubts on many theoretical and technical details about the irace package. In this
regards, I acknowledge the help (and the patience) of the irace team: Dr. Manuel

xv

xvi

López-Ibáñez, Dr. Jérémie Dubois-Lacoste and Leslie Perez. Prof. Carlo Pinciroli de-
serves a special mention for his support on the ARGoS simulator. I wish to thank
all my (previously unmentioned) co-authors: Dr. Arne Brutschy, Lorenzo Garattoni,
Roman Miletitch, Dr. Gaëtan Podevijn, Dr. Andreagiovanni Reina, Touraj Soleymani,
Mattia Salvaro, Dr. Franco Mascia, Prof. Elio Tuci and Dr. Giovanni Pini. I wish to
thank Dr. Gabriele Valentini for his friendly advices and for the many philosophical
discussions on research and life. In one shot I wish to say a huge “thank you!” to
all the professors, researchers, students and friends that I had the honor to meet at
IRIDIA. I will not make a list because I am sure that I would forget someone in the
rush to submit this thesis. I just say that everyone of you guys enriched my life.

I wish to thank Prof. Antonella Santone who was crazy enough to bet on me, a
noisy bachelor student with a lot of enthusiasm and few skills. She supervised me
during the research for my first paper. I wish to thank Dr. Paola Pellegrini for her
supervision during the research for my second paper. Even though Prof. Santone
and Dr. Pellegrini supervised me when I was an undergraduate student, they had a
profound impact on my decision to pursue a PhD.

On a more personal basis, a special thanks goes to the long-time friend Federico
and to my favourite opponent in soccer games, Lorenzo. In addition, I wish to thank
Wakao-san, Isotta, Anja, Mark, Sven and Kobori-san, my colleagues at Toyota Motor
Europe, who have been really supportive. . . and extremely patient with me.

Ringrazio infinitamente la nostra famiglia, tutta. Siete sempre un porto sicuro per
noi e rappresentate l’esempio da seguire.

* * *

This thesis is dedicated to my beloved wife Maria that has walked with me in this,
and many other adventures. Her contribution to this thesis goes beyond the usual
loving support that a wife gives to a husband. Yes, Maria has done all that, but she
did not stop there. Because Maria takes actions for her loved ones! Just to make an
example above all, I still remember with affection the many weekends and evenings
Maria spent with me in the experimental arena, placing 20 e-puck robots in less than
45 seconds! This shows the splendid and lovable person Maria is. For many reasons,
that I hope I tell you enough, I love you very much.

Gianpiero

Contents

Abstract vii

Acknowledgments xv

Contents xix

1 Introduction 1

2 State of the art 7
2.1 Swarm robotics . 8

2.1.1 Characteristics of a robot swarm 9
2.1.2 Properties of a robot swarm . 9
2.1.3 Differences between swarm robotics and traditional approaches 10
2.1.4 Possible applications . 11

2.2 The design problem in swarm robotics 12
2.3 Manual design . 13

2.3.1 Trial-and-error design . 13
2.3.2 Principled manual design . 14

2.4 Automatic design . 17
2.4.1 Off-line methods . 17
2.4.2 On-line methods . 21

2.5 Challenges . 25
2.6 Summary . 30

3 AutoMoDe 33
3.1 The reality gap problem . 34
3.2 Facts and Hypotheses . 34
3.3 Performance vs Representational Power 38

3.3.1 The specialization of AutoMoDe 39
3.4 Performance vs Training Effort . 41

xvii

xviii CONTENTS

3.4.1 Robot platform and reference model 42
3.4.2 Design Method . 44
3.4.3 Task . 45
3.4.4 Protocol . 45
3.4.5 Results . 46
3.4.6 Discussion . 47

3.5 Summary . 47

4 AutoMoDe-Vanilla 49
4.1 Proof of concept: AutoMoDe-Vanilla 49

4.1.1 Robot platform and reference model 50
4.1.2 Module set . 50
4.1.3 Optimization process . 52

4.2 Experimental setup . 54
4.2.1 A yardstick: EvoStick . 56
4.2.2 Tasks . 57

4.3 Results . 58
4.3.1 Aggregation . 59
4.3.2 Foraging . 63

4.4 Discussion . 65
4.5 Summary . 66

5 From Vanilla to Chocolate 69
5.1 Two manual design methods for a swarm of e-pucks 70

5.1.1 U-Human . 70
5.1.2 C-Human . 71

5.2 Study A: comparison of four design methods for RM1 71
5.2.1 Experimental protocol . 72
5.2.2 Per-task results . 79
5.2.3 Aggregate analysis and discussion 81

5.3 Chocolate . 82
5.4 Study B: assessment of Chocolate . 83

5.4.1 Experimental protocol . 83
5.4.2 Per-task results . 84
5.4.3 Aggregate analysis and discussion 86

5.5 Summary . 89

6 Conclusions 91

CONTENTS xix

Bibliography 95

xx CONTENTS

Chapter 1

Introduction

Robots are an integral part of the modern human society. Robots are everywhere.
For example, they raise productivity in factories, they build complex structures un-
der the see, they explore environments out of reach for humans, they assist at the
operating table, and they perform tasks that humans cannot perform. The adoption
of robots has been pushed forward by important advancements in core technologies
needed in robotic systems such as sensors and actuators, manipulators, control sys-
tems, materials, batteries, and ultimately artificial intelligence (Yang and McNutt,
2016; Chouard and Venema, 2015; Ford, 2015).

The adoption of robots is radically changing the way tasks are performed. Hi-
storically, industrial automation has been the primary domain of application for
robotics. Nowadays robots are part of “smart factories” where robots, other ma-
chineries, and humans work together and exchange information in order to speed up
the production process, reduce costs, and increase quality (Brettel et al., 2014; Radzi-
won et al., 2014; Lee et al., 2014). Similarly, robots are an integral part of warehouses
where they organize, sort, stock, and retrieve a wide variety of items (Letzing, 2012;
Basile et al., 2015; Son et al., 2016). Self driving vehicles are already present in facto-
ries, mines and even on the same roads used by humans (Sun et al., 2006; Gusikhin
et al., 2008; Bengler et al., 2014).

It is to be expected that the presence of robots in our societies will keep increas-
ing and more and more robots will be working together. In this context, robots
will be organized in teams or even large groups. One way to coordinating large
groups of robots is swarm robotics. Swarm robotics (Şahin, 2005; Dorigo et al.,
2014) is an approach to coordinating groups of robots that takes inspiration from
the self-organized behaviors of social animals such as ants, bees, etc. These bio-
logical systems, despite being composed of individuals with limited capabilities,
show extremely complex behaviors. For instance, ants are capable of building nests

1

2 CHAPTER 1. INTRODUCTION

featuring tunnels, rooms, and chambers that can reach the complexity of human
cities (MacKay, 1981).

In swarm robotics, a large number of robots cooperate and accomplish tasks that
single individuals would be unable to accomplish. A robot swarm is a highly re-
dundant system that acts in a self-organized way without the need of any form of
centralized coordination. The collective behavior of the swarm is the result of the
local interactions that each robot has with its neighboring peers and with the envi-
ronment.

The self-organized and distributed nature of robot swarms makes them challeng-
ing to design. The requirements are typically expressed at the swarm level by spec-
ifying the task that the swarm, as a whole, has to perform. However, the swarm is
a collective entity and, as such, it is an immaterial concept. In particular, the swarm
itself cannot be programmed, only the individual robots can. The designer’s task is
therefore indirect: they have to design the individual-level behaviors of the robots
that, through a complex set of robot-robot and robot-environment interactions, re-
sult in the desired collective behavior of the swarm. At the moment, there is no
general approach to the design of robot swarms, even though some preliminary pro-
posals have been made (Hamann and Wörn, 2008; Kazadi et al., 2007; Berman et al.,
2011; Brambilla et al., 2012). Currently, most robot swarms are designed by hand
using a trial-and-error process: an individual-level behavior is iteratively improved
and tested until the desired collective behavior is obtained. This approach is closer
to craftsmanship than to engineering: the quality of the result strongly depends on
the experience and intuition of the designer. Moreover, this trial-and-error process
is time consuming, costly, and lacks repeatability and consistency.

An alternative way to develop robot swarms is to rely on automatic design. In
automatic design, the design problem is cast into an optimization problem and then
tackled using optimization algorithms. To date, the main automatic design approach
that has been adopted in swarm robotics is evolutionary robotics (Nolfi and Floreano,
2000). In this approach, an evolutionary algorithm is used to obtain the parameters
of a neural network that maps the sensor readings of the individual robot into values
fed to its actuators. A large literature shows that evolutionary robotics is able to
produce robot swarms that can perform a number of tasks (Bongard, 2013; Doncieux
and Mouret, 2014; Trianni, 2014; Silva et al., 2015a).

Nonetheless, evolutionary robotics presents some known limitations. For in-
stance, the current practice of evolutionary robotics lacks of an engineering method-
ology (Trianni and Nolfi, 2011). The process to obtain a solution involves multiple
iterations where the designer tweaks the setup of the automatic method until the

3

desired solution is generated by the automatic method. This process appears similar
to the process adopted by a trial-and-error manual approach: the only difference is
that, while in the manual approach the designer acts on the control software directly,
in the case of the automatic approach the designer acts on the automatic method that
generates the control software. Another limitation of evolutionary robotics is that,
being based on neural networks, the instances of control software obtained are black
boxes that can hardly be analyzed, verified and maintained (Matarić and Cliff, 1996).
Most importantly, in the context of swarm robotics, the evolutionary approach has
not demonstrated the capability of scaling in complexity and providing solutions for
realistic applications (Trianni, 2014). Among the causes, we reckon the difficulty in
overcoming the reality gap, that is, having a seamless transition from simulation—
the main tool for evolutionary design—to the real world.

In this thesis, we conjecture that the observed limitations of evolutionary robotics
result from an uncontrolled representational power of the control architecture that is
typically adopted in evolutionary robotics. Indeed, one of the tenets of evolutionary
robotics is to minimize the assumptions and the bias injected by the designer (Har-
vey et al., 1997; Nolfi and Floreano, 2000; Bongard, 2013). The idea is to rely on an
evolutionary process to fine-tune the dynamics of the interaction between the robot
and the environment. To this aim, a common assumption in the literature is the need
of a control architecture that features a high representational power—for example, a
neural network.

Unfortunately, a high representational power may be counter-productive in the
peculiar working conditions faced in swarm robotics, which are highly dynamic and
uncertain due to the numerous robot-robot interactions. We claim that such work-
ing conditions offer limited regularities to be discovered and exploited by the evo-
lutionary process. As a consequence, it is likely that evolution will produce control
software that exploits “idiosyncratic features” (Floreano and Keller, 2010) of the sim-
ulation, that is, the differences between simulation and reality, which unavoidably
occur. This control software will generalize poorly and will be unable to overcome
the reality gap. Because the a priori identification of the differences between simu-
lation and reality is in general difficult, an automatic design approach must be as
robust as possible to their presence.

In this thesis, we consider the reality gap with the aim of conceiving an auto-
matic design method that is able to produce robot swarms that perform effectively
in the real word. The intuition of this thesis is that the reality gap problem faced
by evolutionary robotics—or any other automatic design method— bears a strong
resemblance to the generalization problem faced in supervised learning. Following

4 CHAPTER 1. INTRODUCTION

this intuition, we cast the reality gap problem in terms of the bias-variance tradeoff
formalized in the supervised learning literature (Geman et al., 1992).

The bias-variance tradeoff correlates the generalization capabilities of an approxi-
mator with its complexity (or with the amount of computational effort used). Past an
optimal level, increasing the complexity of an approximator (or the training effort) is
counterproductive because it hinders the generalization abilities of the approxima-
tor itself. On the basis of the bias-variance tradeoff, we define two hypotheses in the
context of the automatic design of robot swarms. Hypothesis hp1: past an optimal
level, increasing the complexity of the control architecture (i.e., its representational
power) is counterproductive. Hypothesis hp2: past an optimal level, increasing the
design effort is counterproductive. In both cases, past an optimal level, which is
unknown a priori, the performance in simulation increases while the performance in
reality decreases.

In context of this thesis, the two hypotheses represent a tool that we use to un-
derstand the implications of the reality gap, with the ultimate goal of conceiving an
automatic design method that is able to to produce robot swarms that perform ef-
fectively in the real word. The two hypotheses will be corroborated in this thesis.
Hypothesis hp1 has a prominent role while hp2 will be corroborated in a proof-of-
concept experiment.

Following Hypothesis hp1, we conjecture that the reality gap problem can be
tackled through a suitable injection of bias in the control architecture adopted by
the automatic design process. We define AutoMoDe, a novel automatic design ap-
proach that, while having a control architecture with a low representational power,
is able to design robot swarms to tackle many tasks of interest. AutoMoDe gener-
ates an individual-level behavior in the form of a probabilistic finite state machine
composed of preexisting parametric modules. AutoMoDe develops control software
by selecting, via an optimization algorithm, the topology of the probabilistic finite
state machine, the modules to be included, and the value of their parameters. The
set of modules and the rules to compose a probabilistic finite state machine repre-
sent the bias injected in the automatic design process. As a result of the injection of
bias, we expect that the variance of the behaviors designed by AutoMoDe will be
consequently reduced and ultimately the control software will overcome the reality
gap. We test AutoMoDe via experiments with a swarm of e-puck robots. The re-
sults show that having a low representational power is beneficial: AutoMoDe nicely
overcomes the reality gap.

We corroborate Hypothesis hp2 via an experiment involving a swarm of 20 e-
puck robots. In the experiment, we compare the performance of robot swarms ob-

5

tained using increasing design budgets (i.e., increasing computational effort). The
results corroborate hp2: past an optimal level of design budget, the performance in
simulation increases while the performance in reality decreases.

The rest of the thesis is organized as follows. In Chapter 2, we give an overview
of the domain of swarm robotics with a particular focus on the design of control
software for robot swarms. We highlight the characteristics of swarm robotics along
with possible applications. We review the notable achievements in both manual and
automatic design. We analyze the current literature on the automatic design of robot
swarms and we highlight that a well-established empirical practice is still missing.
Finally, we discuss the challenges to be overcome to establish a proper empirical
practice in the domain of the automatic design of robot swarms.

In Chapter 3, we describe the framework that constitutes the theoretical base of
this thesis. We introduce the reality gap and, via the bias-variance tradeoff, we de-
scribe the intuition that the reality gap bears a strong resemblance with the general-
ization problem faced in supervised learning. Following this intuition, we describe
two hypotheses. Hypothesis hp1, which relates the reality gap to the representa-
tional power of the control architecture, is the starting point for the definition of
AutoMoDe, an automatic design approach that features a control architecture with
low representational power. Hypothesis hp2, which relates the reality gap to the
design effort, is corroborated via an experiment with a swarm of e-puck robots.

In Chapter 4, we introduce the first experiment to validate the core ideas of Au-
toMoDe. As AutoMoDe is an approach that needs to be specialized for a particu-
lar robotic platform, we introduce Vanilla, a specialization of AutoMoDe for the
e-puck robot. We compare Vanilla with EvoStick, an implementation of evolu-
tionary robotics. We perform an experiment on two tasks.

In Chapter 5, we describe two empirical studies: Study A and Study B. In Study A,
we perform an experiment in which Vanilla and EvoStick are compared with
human designers on five swarm robotics tasks. In Study B, we introduce another
specialization of AutoMoDe, Chocolate. Chocolate differs from Vanilla only
in the optimization algorithm. We compare Vanilla, EvoStick and Chocolate

with human designers on five swarm robotics tasks.
In Chapter 6, we conclude the thesis. We summarize the contributions and we

highlight their relevance. Finally, we suggest and discuss some future research di-
rections.

6 CHAPTER 1. INTRODUCTION

Chapter 2

State of the art

This chapter contains a bird-eye view of the domain of swarm robotics with partic-
ular focus on the design of control software of robot swarms.

The design of the control software for robot swarms is the main issue in swarm
robotics: defining what the individuals should do in order to achieve a desired col-
lective goal is challenging and a general approach to tackle this issue is still miss-
ing. Automatic design is a promising approach to the design of control software for
robot swarms. In an automatic design method, the design problem is cast into an
optimization problem and is addressed using an optimization algorithm.

Although automatic design has been successfully applied to the design of robot
swarms, an apparent issue that emerges from the literature is that a solid, well-
established, and consistently applied empirical practice is still missing. For example,
studies that propose new methods and ideas do not typically provide any compari-
son with existing ones.

We maintain that the lack of a proper empirical practice hinders the progress of
the research on the automatic design of control software for robot swarms. As a
consequence, the review of the literature that we propose has two main goals: First,
we highlight the notable achievements in the (automatic) design of control software
for robot swarms with a particular focus on the empirical approach adopted to as-
sess the performance of the new proposed design methods. Second, we discuss the
challenges to be overcome to establish a proper empirical practice for the domain.

This chapter is organized as follows: In Section 2.1, we introduce the domain
of swarm robotics. In Section 2.2, we describe the design problem faced in swarm
robotics. Section 2.3 and Section 2.4 are devoted to the description of manual and au-
tomatic design, respectively. In Section 2.4 we highlight studies that present notable
achievements in the domain of the automatic design of control software for robot
swarms with a particular attention to the empirical approach adopted to assess new

7

8 CHAPTER 2. STATE OF THE ART

proposals. In Section 2.5, we discuss some challenges that the research community
should overcome to transform the current research on the automatic design of con-
trol software for robot swarms into a mature science. In Section 2.6, we conclude
with a summary of the analysis of the state of the art performed in this chapter.

2.1 Swarm robotics

In swarm robotics (Şahin, 2005; Dorigo et al., 2014), a large number of robots coop-
erate and accomplish tasks that a single individual would be unable to accomplish.
A robot swarm is a highly redundant system that acts in a self-organized way with-
out the need of any form of centralized coordination. The collective behavior of the
swarm is the result of the local interactions that each robot has with its neighbor-
ing peers and with the environment. Swarm robotics was born as application of the
concepts of swarm intelligence (Beni, 2005) to robotics. Swarm intelligence studies
the behavior of systems, either natural or artificial, composed of many agents that
interact locally.

Over the years, we can find many reviews of the literature in swarm robotics.
Şahin (2005) is the first to survey the literature and to provide the first definition of
swarm robotics. For Şahin (2005) swarm robotics is defined as: “ the study of how
a large number of relatively simple physically embodied agents can be designed
such that a desired collective behavior emerges from the local interactions among
agents and between the agents and the environment.” Two years later, Bayindir and
Şahin (2007) organized the literature using five taxonomies: modeling, design, com-
munication, analytical studies and problem. Gazi and Fidan (2007) reviewed the
literature focusing on the techniques to model and design swarm robotics systems.
This review follows a control-theory perspective. Brambilla et al. (2013) surveyed the
literature from an engineering perspective. They classified the contributions into de-
sign methods, modeling methods and collective behaviors. Garattoni and Birattari
(2016) reviewed the literature following the same classification proposed by Bram-
billa et al. (2013). This review surveys the most notable swarm robotics systems and
the possible future applications of swarm robotics.

This section gives a brief introduction to swarm robotics following the footsteps
of Garattoni and Birattari (2016). This section is not to be considered a comprehen-
sive review of the literature in swarm robotics. For comprehensive reviews of the
literature in swarm robotics we refer the reader to Brambilla et al. (2013) and Garat-
toni and Birattari (2016).

2.1. SWARM ROBOTICS 9

2.1.1 Characteristics of a robot swarm

A robot swarm has some peculiar characteristics:

Self-organization. A robot swarm is an autonomous system that behaves in a self-
organized manner. In a robot swarm there is no leader that coordinates the indi-
vidual robots and the collective behavior showed by the swarm is the result of the
interactions that each individual robot has with its peers and with the environ-
ment.

Redundancy. In a robot swarm, no single robot is indispensable. A robot swarm
is composed of a large number of robots and there are multiple robots that can
tackle each of the tasks required to accomplish a given mission. When the robot
swarm is composed of robots that have identical hardware and control software,
the swarm is defined homogeneous. On the contrary, when the robot swarm is
composed of different classes of robots each one having different hardware and
control software, the swarm is defined heterogeneous. In both cases, a robot swarm
is highly redundant.

Locality. In a robot swarm, the individual robots have local perception and com-
munication abilities. For this reason, the information that the individual robots
use to determine their behavior are local: the individual robots interact with their
peers in the neighborhood and they are unaware of the total number of robots that
globally are taking part in the mission.

Parallelism. A robot swarm tackles multiple tasks at the same time since at any
given time, different robots are engaged in different tasks. The individual robots
may switch task according to the circumstances. This task allocation follows the
same principles of self-organization and locality.

2.1.2 Properties of a robot swarm

The characteristics of self-organization, redundancy, locality and parallelism showed
by a robot swarm are appreciated since they are commonly reckoned to promote
properties that are desirable in a robotic system such as fault tolerance, scalability
and flexibility:

Fault tolerance. A robot swarm is self-organized and it is not managed or coordi-
nated by a single, central entity. Moreover, a robot swarm is composed of a large
number of robots that are interchangeable one another. For these two reasons, a
robot swarm can cope with the failure of some of its individual robots.

10 CHAPTER 2. STATE OF THE ART

Scalability. Since a robot swarm uses only local communication and perception,
its behavior does not rely on a particular number of robots. For this reason, in
principle, the behavior of the robot swarm is not qualitatively altered if robots are
added or removed.

Flexibility. A robot swarm is parallel and it is composed of robots that can switch
tasks according to contingencies. For this reason, a robot swarm can cope with
modifications of the environment and changes of the working conditions.

2.1.3 Differences between swarm robotics and traditional approaches

Swarm robotics can be seen as opposed to traditional approaches such as the single-
robot approach (Nilsson, 1984) and classical multi-robot approach (Dudek et al.,
1996; Parker, 2000; Iocchi et al., 2001).

In a single robot approach, a single robot is in charge of the given mission. The
main issue of having a single robot is that the system presents a single point of fail-
ure: the damage or the failure of the single robot would jeopardize the entire mis-
sion. For this reason, swarm robotics appears more promising for missions in which
the probability of damaging the robot is particularly high. In addition, if we consider
a robot swarm and a single monolithic robot that should have the same capabilities,
the individual robots composing the swarm have, typically, simpler mechanics and
feature simpler sensors than the monolithic robot. This should lead to a reduced cost
in terms of hardware design in the case of swarm robotics and to a reduced failure
probability. On the contrary, the effort to design the control software for the robot
swarm is higher that the effort to program a monolithic robot.

In a classical multi-robot approach, a small group of robots is in charge of the
given mission (Dudek et al., 1996; Gerkey and Matarić, 2004). The size of the group is
relatively small compared to a typical robot swarm. Moreover, the behavior and the
communication patterns are tailored at design time for the specific size of the group
and each robot has a predefined role in the context of the mission. For this reason,
the group of robots of a classical multi-robot approach is in general less scalable
than a robot swarm: the addition or the removal of a robot requires a new design
of the control software. Similarly, a classical multi-robot approach is less flexible
and fault tolerant: changes due to contingencies or failure of some robots have to be
considered and taken care of at design time. However, the design of a multi-robot
system is easier compared to the design of a robot swarm.

2.1. SWARM ROBOTICS 11

2.1.4 Possible applications

Swarm robotics is a promising approach for those applications that require robotic
systems to be fault tolerant, scalable and flexible. Among these applications we
find: search and rescue of survivors in disaster areas, humanitarian demining, ex-
ploration of planets or of unknown environments, removal of materials like waste
or pollutant, surveillance, nano-medicine and nano-surgery. In this section, we fol-
low the same reasoning presented in Garattoni and Birattari (2016) and we cover
applications for which some preliminary results have already been achieved:

Patrolling. Christensen et al. (2015) presented a swarm of aquatic-surface robots
that aims at performing tasks such as patrolling, intruder detection, and monitor-
ing. A first achievement is presented in Duarte et al. (2016), where a swarm of 10
robots performs monitoring in a waterbody next to the Tagus river in Lisbon, Por-
tugal. Simulated experiments have shown that a swarm composed of 1000 aquatic
robots are sufficient to cover 20 km of coast of the Lampedusa Island (Duarte et al.,
2014b). More details on these experiments can be found in Section 2.4.1.

Warehouse automation. The automation of warehouses is a promising scenario for
robot swarms. In particular, researchers are exploring the use of swarm robotics
techniques to create a system that is able to optimize the flow of materials in ware-
houses while keeping the warehouse organized (Ackerman, 2012). For instance,
algorithms inspired by ant’s behaviors allow the automatic definition of the opti-
mal paths for the individual robots in order to reduce interferences. Warehouse
automation largely benefits from the characteristics of autonomy and decentral-
ization: more robots can be added over time if required by contingencies and the
failure of individual robots can be managed by the remaining robots of the swarm
that will take the pending tasks. Moreover, the parallelism offered by a robot
swarm allows for the reduction of the average order processing time.

Agriculture. Attempts of using robot swarms to automate agricultural processes
have been already made both in the industry (Lubin, 2011; Harvest, 2008) and
through academic projects (RHEA, 2010; University of Copenhagen, 2011). These
projects deal with heterogeneous swarms composed by aerial and ground robots.
The aerial robots observe the environment from above in order to provide infor-
mation to guide the ground robots (e.g., the areas with higher concentration of
harvest to crop or the position of the weeds to be removed). The ground robots
combine this information with the one they collect locally in order to perform the
required activities.

Medicine. Swarm of nano-robots that are meant to be injected in the human body

12 CHAPTER 2. STATE OF THE ART

are currently under study. The main idea is to use a swarm of nano-robot to carry
out diagnosis or targeted drug-delivery. In this context, the main challenge is the
manufacturing of the robots. To tackle this challenge, two main approaches are
present in the literature. The first approach is based on nano-robots that do not
have any sensor nor actuator. The behavior of these nano-robots is defined at de-
sign time by tuning their physical/chemical properties such as, material, shape,
charge and coating (Hauert and Bhatia, 2014; Hauert et al., 2013). The second ap-
proach is based on more complex nano-robot that are able to move autonomously,
recognize a target and release drugs (Chobotix, 2008; Sarvašová et al., 2015). In
both approaches, swarm behaviors are used to allow the nano-robots to perform
tasks such as navigation in the blood stream, protection against macrophages, and
identification of the targets.

2.2 The design problem in swarm robotics

The design of the behavior of the robot swarm is the core issue in swarm robotics.
The self-organized and distributed nature of robot swarms makes them challenging
to design. The requirements are typically expressed at the swarm level by specifying
the task that the swarm, as a whole, has to perform. However, the swarm is a col-
lective entity and, as such, it is an immaterial concept. In particular, the swarm itself
cannot be programmed, only the individual robots can. The designer’s task is there-
fore indirect: they have to design the individual-level behaviors of the robots that,
through a complex set of robot-robot and robot-environment interactions, result in
the desired collective behavior of the swarm.

Although the literature describes a number of robot swarms that have been de-
veloped and demonstrated, a reliable engineering approach to the design of control
software for robot swarms is still at dawn (Brambilla et al., 2013). The most com-
mon approach to design robot swarms is the manual design: the designer manually
develops the control software of the individual robots. Typically, designers proceed
by trial-and-error, guided only by their intuition and experience. Some effort has
been made recently to overcome this problem and a number of principled manual
methods have been proposed (e.g., see Hamann and Wörn, 2008; Kazadi et al., 2009;
Berman et al., 2011; Werfel et al., 2014; Brambilla et al., 2015; Valentini et al., 2016b;
Reina et al., 2015c; Lopes et al., 2016). Although interesting and promising results
have been obtained, we are far from a generally applicable solution.

Automatic methods are a promising alternative. In an automatic method, the
problem of designing the control software for a robot swarm is cast into an opti-

2.3. MANUAL DESIGN 13

mization problem: the different design choices define a search space that is explored
using an optimization algorithm. Most of the automatic methods proposed so far
belong to the framework of evolutionary robotics (Nolfi and Floreano, 2000). Tra-
ditionally in evolutionary robotics, the control software is based on artificial neural
networks and is optimized automatically via an evolutionary algorithm, following
a process inspired by natural evolution. As discussed in Section 2.4, evolutionary
robotics has been successfully adopted to design robot swarms that perform various
tasks. The results achieved show that automatic design is a viable and promising
approach to designing the control software of robot swarms.

Unfortunately, the pioneering achievements registered so far are to be consid-
ered as somehow isolated contributions, rather than the incremental acquisitions
of an established and mature science.1 With few exceptions, studies that introduce
new automatic design methods and ideas do not provide any comparison with pre-
viously introduced ones. Indeed, a solid, well-established, and consistently applied
practice for the empirical assessment and comparison of automatic design methods
is still missing.

2.3 Manual design

In manual design, the designer develops the control software of the individual robots
by hand. Typically, the control architecture adopted is based on probabilistic finite
state machines (Rabin, 1963). Even though the most commonly used manual ap-
proach is the trial-and-error approach, in the recent years principled manual design
approaches have been proposed. In the next sections we describe the trial-and-error
approach and some promising principled manual design approaches.

2.3.1 Trial-and-error design

Designing robot swarms using trial-and-error is closer to craftsmanship than to en-
gineering: the designer proceeds with the implementation of the behavior in an
unstructured way, with little scientific guidance. The designer tries to obtain the
desired collective behavior by exploring the space of the individual behaviors of
the robots. This exploration is driven only by the ingenuity and the expertise of
the designer. The typical design process starts with the designer that develops a
first implementation of the individual control software. This first implementation is
then tested in order to evaluate the resulting collective behavior of the robot swarm.

1We use the notion of mature science as defined by Kuhn (1962).

14 CHAPTER 2. STATE OF THE ART

The evaluation is usually performed using computer-based simulations. On the ba-
sis of the resulting collective behavior, the designer iteratively modifies and tests
the implementation of the control software until the desired collective behavior is
achieved.

In trial-and-error design, the implementation follows the principles of behavior-
based robotics (Brooks, 1990, 1991; Parker, 1996a).

Behavior-based robotics follows the idea that robot do not need full and compre-
hensive representation of the world in order to act. In Brooks (1991), the author
states that:

Artificial intelligence research has foundered on the issue of representa-
tion. When intelligence is approached in an incremental manner, with
strict reliance on interfacing to the real world through perception and ac-
tion, reliance on representation disappears.

In behavior-based robotics, the robot behaves following its perception without try-
ing to plan its actions based on a representation of the environment. This allows
the development of robots that show complex behaviors while having a relatively
simple control architecture. The control software is typically organized in a modu-
lar architecture that is largely inspired by Brooks’ subsumption architecture (Brooks,
1986). Behavior-based robotics has been successfully applied to single-robot scenar-
ios and then applied to swarm robotics. The application of the behavior-based ap-
proach to swarm robotics is straightforward, and has been the most common choice
to date (Brambilla et al., 2013). The trial-and-error approach has been used to design
robot swarms for various tasks including aggregation (Şahin, 2005), chain forma-
tion (Nouyan et al., 2009), and task allocation (Liu and Winfield, 2010).

The behavior-based approach does not address the core design problem that one
faces in swarm robotics: it does not provide any guideline to define what the indi-
vidual robot should do so that the given swarm-level specifications are met.

2.3.2 Principled manual design

Some works have proposed ideas to address the issue of deriving the individual
behavior from the desired collective one. Unfortunately, most of them rely on strong
assumptions and are not of general applicability as they have been conceived for
specific tasks. The following is a brief overview of some of the most promising
ideas. For a comprehensive review, we refer the reader to Brambilla et al. (2013).

Martinoli et al. (1999) used rate equations to model a collective clustering be-
havior and to guide the implementation of the control software of the individual

2.3. MANUAL DESIGN 15

robots. The method was assessed both in simulation and with up to ten Khepera
robots (Mondada et al., 1993). Lerman et al. (2001) and Martinoli et al. (2004) ap-
plied rate equations to a cooperative stick pulling task. The control software pro-
duced was tested with up to six Kheperas. Lerman and Galstyan (2002) used rate
equations to model a foraging behavior under the effect of interference.

Kazadi et al. (2007) used a method based on artificial vector fields to develop a
pattern formation behavior. The method is illustrated with simulations and appears
to be limited to spatially organizing behaviors. Hsieh et al. (2007) proposed an ap-
proach based on artificial potentials to obtain control software for coordinated mo-
tion along predefined orbital trajectories. The authors provided convergence proofs
and simulated experiments. Similarly, Sartoretti et al. (2014) proposed an approach
based on stochastic differential equations driven by white Gaussian noise to tackle
coordinated motion. In this case, the orbital trajectory is derived via collective con-
sensus among the robots of the swarm. The approach has been validated with a
swarm of eight e-puck robots.

Hamann and Wörn (2008) used Langevin equations to model the behavior of the
individual robots, and analytically derived a Fokker-Planck equation that models
the collective behavior of the swarm. Berman et al. (2011) adopted a similar ap-
proach based on a set of advection-diffusion-reaction partial differential equations
to design control software for task allocation. Neither of the two approaches has
been assessed in robot experiments yet.

Lopes et al. (2014, 2016) introduced an approach based on supervisory control
theory. The approach has been demonstrated by designing a segregation behavior.
The assessment has been performed with a swarm of 26 e-pucks and one of 42 kilo-
bots (Rubenstein et al., 2014a). The main drawback of this approach is that it requires
extensive domain knowledge.

Brambilla et al. (2012); Brambilla (2014); Brambilla et al. (2015) introduced an
approach based on prescriptive modeling and model checking. The approach has
been demonstrated by designing control software for two tasks: aggregation and
foraging. The assessment has been performed with swarms of up to 20 e-pucks.
Also in this case, the approach requires extensive domain knowledge.

Valentini (2016); Valentini et al. (2016a,b, 2014) proposed a modular and model-
driven approach to design collective decision-making strategies for the best-of-n
problem. They propose a generic control structure as well as a generic macroscopic
model that can be instantiated by the designer to create a specific strategy and an-
alyze its performance. The approach has been demonstrated by designing control
software for two tasks: collective perception (Valentini et al., 2016a) and site selec-

16 CHAPTER 2. STATE OF THE ART

tion (Valentini et al., 2016b). The assessment has been performed with a swarm of 20
e-pucks and one of 100 kilobots. A limit of the proposed approach is that is confined
to the domain of collective decision making.

Another way to solve the collective-to-individual design issue is to define a cat-
alogue of design patters (Babaoglu et al., 2006; Gardelli et al., 2007; Reina et al.,
2014, 2015c; Reina, 2016). The definition of a design pattern in the context of swarm
robotics is composed of: i) a model that describes the requirements of the desired
collective behavior, ii) a description of the individual behavior that once installed on
the robots of the swarm leads to the desired collective behavior, and iii) a mapping to
obtain the parameters of the individual behavior starting from the parameters of the
desired collective behavior. Reina et al. (2015a) demonstrated the use of design pat-
terns on a decision-making task in a collective foraging scenario. The experiments
were performed in simulation only.

Another principled manual design method that promotes the decomposition of
the design problem has been proposed in order to obtain robot swarms that perform
self-assembly (Rubenstein et al., 2014b) and construction (Werfel et al., 2014). This
method is based on three steps described in the following considering the case of a
construction task. First, the user describes the desired structure to be built in terms
of physical properties such as shape and height. Second, the method translates the
description of the structure into a series of actions that need to be performed in
order to build the structure. Third, the method maps the actions into a set of rules
that can be followed by the individual robots. In addition, this method allows for
the validation of properties such as correctness and convergence of the construction
process. This method can be applied only to a limited range of missions.

In the context of principled manual design, scripting languages that allow the
designer to “program” the swarm as a whole entity have been proposed (Bachrach
et al., 2010; Pinciroli et al., 2015). These scripting languages feature primitives that
model behaviors that are useful in the context of swarm robotics such as local com-
munication or team selection. These primitives are translated approximately into in-
dividual behaviors via a runtime library. In addition to swarm behavior primitives,
scripting languages offer also primitives that model individual behaviors. Unfortu-
nately, scripting languages are still in their infancy and can not be used in a broad
number of applications.

2.4. AUTOMATIC DESIGN 17

2.4 Automatic design

In automatic design, the problem of designing the control software is cast into an
optimization problem. In other terms, an automatic design method uses an opti-
mization algorithm to search the space of all instances of control software that it can
possibly produce, with the goal of finding one that maximizes an appropriate per-
formance measure. Automatic design methods can be divided in two classes: off-line
and on-line methods.

2.4.1 Off-line methods

In off-line methods, the design process takes place in a preliminary, dedicated phase:
the design phase. The design phase occurs and terminates before the robot swarm
is deployed in its operational environment. Within the design process, an off-line
method evaluates a relatively large number of different instances of control soft-
ware. Typically, the evaluation of an instance of control software is performed via a
computer-based simulation. On the one hand, simulation enables a faster-than-real-
time evaluation and, on the other hand, it prevents that robots are damaged by a
possibly low quality instance of the control software.

Evolutionary robotics. Evolutionary robotics (Nolfi and Floreano, 2000) is the most
studied automatic design approach in swarm robotics. Typically, in evolutionary
robotics an evolutionary algorithm is used to optimize the parameters and possibly
the structure of a neural network that takes as an input sensor readings and returns
actuation commands. Originally, evolutionary robotics was successfully applied in
single robot scenarios and then adopted in swarm robotics.

The adoption of the evolutionary robotics approach in swarm robotics goes under
the name of evolutionary swarm robotics (Trianni, 2008). In the following, we present
a number of notable achievements in evolutionary swarm robotics. For comprehen-
sive reviews of the (single-robot) evolutionary robotics literature, we refer the reader
to Bongard (2013); Trianni (2014); Doncieux and Mouret (2014); Silva et al. (2015a).

Most of the works in evolutionary swarm robotics share a set of common char-
acteristics: (1) The swarms produced are behaviorally homogeneous, that is, all the
robots of the swarm execute identical copies of the same control software. (2) The
objective function that is optimized during the design process is globally and cen-
trally evaluated, that is, it is computed considering the performance of the swarm
as a whole. (3) The optimization algorithm adopted within the design process is a
classical evolutionary algorithm that features elitism, recombination and mutation.

18 CHAPTER 2. STATE OF THE ART

(4) The size of the population ranges from 50 to 200 individuals, with 100 individu-
als as the most common value. (5) The number of performance assessments for each
instance of the control software ranges from 3 to 100, with 10 as the most common
value. Each assessment differs from the others in the initial conditions—i.e., position
of the robots and characteristics of the environment. (6) To take into account stochas-
ticity, different independent runs of the evolutionary algorithm are performed. The
most common number of independent runs is 10. (7) Unfortunately, the assessment
of the obtained control software in reality is not always performed. Many studies
present results in simulation only. When robot experiments are performed, they are
often only isolated demonstrations rather than a structured empirical analysis aimed
at producing statistically significant results.

Since the introduction of evolutionary swarm robotics, most of the research effort
aimed at showing the feasibility of the approach and investigating whether a partic-
ular collective behavior can be obtained via artificial evolution. Quinn et al. (2003)
were the first to adopt the evolutionary approach in the context of swarm robotics.
The authors obtained a coordinated motion behavior by using an evolutionary algo-
rithm to optimize control software based on a neural network. Robot experiments
were performed with three Khepera robots. More than a decade after the publication
of this work, some aspects of the experimental design might appear unusual. For ex-
ample, the performance of each instance of control software produced within the de-
sign process was assessed via 60 evaluations. In the final stage of the design process,
the number of evaluations was increased to 100. At the end of the design process,
10 different instances of control software were tested in robot experiments. The very
best instance was tested through 100 runs. Following this seminal work, a number
of robot swarms designed via evolutionary robotics have been described in the lit-
erature. For instance, Christensen and Dorigo (2006) showed how to use evolution
to obtain a swarm of robots that is able to perform hole-avoidance and phototaxis
at the same time. The study includes a comparison between three different evolu-
tionary algorithms: a classical evolutionary algorithm, evolutionary strategy, and
a co-evolutionary genetic algorithm. For each algorithm, 20 independent runs were
performed. Evolutionary strategy yielded the best performance. The best instance of
control software produced by evolutionary strategy was tested in experiments per-
formed with a group of three s-bot robots. Under a similar setting, Baldassarre et al.
(2007) obtained coordinated motion with a swarm of four physically connected s-bot
robots. The best instance of control software obtained across 20 independent runs
of the design process was tested on a group of four s-bot robots. In the experiments
performed by the authors, the control software obtained via computer-based sim-

2.4. AUTOMATIC DESIGN 19

ulations performed well in reality without the need of any adjustment. Moreover,
the same control software performed well also when the robots had to navigate on
rough terrains. Hauert et al. (2008) used evolutionary robotics to obtain the con-
trol software for a swarm of aerial robots that were required to establish a wireless
communication network. Experiments were performed in simulation only. Trianni
and Nolfi (2009) studied the design of a self-organizing behavior via evolution. The
experimental analysis was performed mostly in simulation and involved 20 inde-
pendent runs of the design process. The best instance of control software obtained
across the 20 runs was tested on groups of two and three s-bot robots. Waibel et al.
(2009) investigated the influence on performance of different selective pressures (in-
dividual and collective) and different team compositions (homogeneous and het-
erogeneous swarms). The experimental analysis was conducted on three different
variants of a foraging task. For each variant, four different combinations of selective
pressures and team compositions were tested via 20 independent runs of the design
process. Experiments were conducted both in simulation and with ten Alice robots.

Recently, the research in evolutionary swarm robotics has been influenced by the
current trends in evolutionary computation. The studies on novelty search and multi-
objective optimization are worthy of mention. Novelty search (Lehman and Stanley,
2011) is an approach to evolutionary computation that promotes diversity instead of
performance. Results indicate that novelty search is robust to issues that affect the
classical evolutionary approach, including premature convergence and stagnation.
Gomes et al. (2013) introduced novelty search in the context of swarm robotics. They
used novelty search to automatically develop control software for aggregation and
resource sharing. The study includes a comparison with a classical evolutionary ap-
proach and with an hybrid approach that combines a classical approach and novelty
search. Experiments were conducted in simulation only.

Multi-objective optimization focuses on problems in which multiple, possibly
conflicting objectives are to be achieved. In evolutionary robotics, multi-objective
optimization might be of interest in two contexts: (i) The problem is naturally for-
mulated as a multi-objective problem. For example, the task is composite and the
robots are required to accomplish multiple sub-tasks, each associated with a perfor-
mance measure (Capi, 2007). (ii) The designer wishes to promote a specific prop-
erty that can be characterized via a measurable quantity. For example, the designer
wishes to increase the chance that the obtained control software works properly in
reality (Koos et al., 2013b), enforce a low complexity of the control software pro-
duced by the optimization process (Teo and Abbass, 2004, 2005), or increase the ro-
bustness against hardware failures and environmental variability (Lehman et al.,

20 CHAPTER 2. STATE OF THE ART

2013; Koos et al., 2013a). Trianni and López-Ibáñez (2015) were the first to study
the application of multi-objective optimization in the context of evolutionary swarm
robotics. They presented results on two swarm robotics tasks: flocking and an ide-
alized version of the stick-pulling experiment. Experiments were conducted in sim-
ulation only.2

Other approaches. A number of notable studies depart from the classical evolu-
tionary robotics tradition by adopting (i) control software architectures other than
monolithic neural networks and/or (ii) optimization algorithms other than evolu-
tionary computation. In particular, some authors studied the possibility of using an
optimization algorithm to fine-tune a parametric control architecture that features
only a small set of parameters. Hecker et al. (2012) obtained a foraging behavior
by using artificial evolution to optimize the parameters of a probabilistic finite state
machine. Experiments were conducted with a group of three custom-made two-
wheeled robots. The objects to be retrieved were emulated via RFID tags placed on
the ground. The tags could be sensed by the robots via an onboard RFID reader.
Gauci et al. (2014a) obtained an object clustering behavior by using an evolutionary
strategy to optimize a simple control architecture that features six parameters. The
simplicity of the control architecture arises from the fact that the control architecture
controls the speed of the two wheels of the robot exclusively based on the readings of
a single three-state line-of-sight sensor. The line-of-sight sensor indicates whether the
robot faces (i) another robot, (ii) an object to cluster, or (iii) neither of them. On the
robot, the line-of-sight sensor was implemented using the frontal camera and a color
detector that recognizes robots that are green and objects that are red. Experiments
were conducted with a group of five e-puck robots. Ten independent runs of the de-
sign process were performed in simulation. For each run, the best instance of control
software obtained was tested in reality. Gauci et al. (2014b) optimized the same con-
trol architecture via exhaustive search to obtain self-organized aggregation. In this
second study, no object is present in the environment and the line-of-sight sensor
can be therefore in only two states: it indicates whether the robot faces another robot
or not. Due to the even simpler control architecture adopted in this second study,
the design space counts only 194 481 different instances of control software that can
be possibly generated. The reduced size of the design space allows for exhaustive
search in simulation. Experiments were conducted with a group of forty e-puck
robots: the best performing instance of control software found via exhaustive search
was tested 30 times on the robots. Ferrante et al. (2015) used a method based on

2The authors presented results also on a single-robot task.

2.4. AUTOMATIC DESIGN 21

grammatical evolution (Ferrante et al., 2013) to evolve modular control software to
tackle task specialization in a robot swarm. In particular, the authors highlighted
the environmental conditions that are necessary for task specialization to emerge.
Experiments were performed in simulation only.

Other authors proposed the adoption of a modular control architecture: the con-
trol software is obtained by combining modules obtained either via manual or auto-
matic design. Duarte et al. (2014a) presented an approach based on the hierarchical
decomposition of complex behaviors into simpler behaviors that can be generated ei-
ther manually or via evolutionary robotics. The simple behaviors are then combined
using a high-level neural networks. The approach was illustrated in simulation only,
on an object retrieval task. The results indicate that the approach outperforms the
classical, monolithic evolutionary approach. Similarly, Duarte et al. (2014b) used hi-
erarchical decomposition to obtain control software for a patrolling task. The control
software comprises low-level behaviors (go to waypoint, patrol, pursue intruder)
and one module that arbitrates the low-level behaviors. The low-level behaviors
were implemented as neural networks and were obtained via evolution. The arbi-
trator was manually written. The resulting system was tested in simulation only.
The downside of the approach is that hierarchical decomposition is task dependent
and has to be performed manually by the designer. In a successive study, the au-
thors designed via artificial evolution control software for a swarm of ten aquatic
robots (Duarte et al., 2016; Christensen et al., 2016). The task to be performed by the
swarm comprised four different sub-tasks: homing, dispersion, clustering and area
monitoring. The aggregated control software was obtained by sequentially combin-
ing the instances of control software developed for each sub-task. Experiments were
performed in a 330 m × 190 m waterbody next to the Tagus river in Lisbon, Portu-
gal. The results show that the control software produced via the proposed method
crosses the reality gap nicely. Our original method, AutoMoDe, falls in this category.
For details on AutoMoDe we refer the reader to Chapter 3.

2.4.2 On-line methods

In on-line methods, the design process takes place when the robot swarm has been
already deployed in its operational environment. On-line methods, as opposed to
off-line methods, can benefit from the availability of information on the actual op-
erational environment that would be unavailable at off-line design time. Moreover,
one could expect that an on-line method can cope with changes in operating condi-
tions and adapt to contingencies. In other words, on-line methods aspire to produce
a design that is more tailored to the specific mission than the one produced by an off-

22 CHAPTER 2. STATE OF THE ART

line method. On the downside, on-line methods are likely constrained to a reduced
search space with respect to off-line methods because of two main reasons: (i) as
the design process is performed by the robots themselves while they are operational,
computational resources and time are limiting factors; and (ii) candidate designs that
are potentially dangerous for the robots should be a priori removed from the search
space to avoid jeopardizing the mission. Moreover, in a realistic on-line setting, the
design process is fully distributed on the robots and cannot rely on any centralized
entity to measure performance and guide the search, as it can in an off-line setting.
The design process is therefore constrained to use performance indicator that can be
evaluated in a distributed and local way. Whether on-line methods are more or less
effective than off-line methods, which are the features of a mission that are better
handled by on-line or off-line methods, and whether on-line and off-line methods
can be effectively combined are empirical questions that require further research to
be answered convincingly.

In the works on the on-line automatic design of control software for robot swarms,
we can highlight some typical characteristics: (1) Each robot of the swarm explores
a portion of the search space. Typically, each robot evaluates asynchronously a sub-
population of instances of control software and keeps track of their performance.
(2) The robots exchange information to co-ordinate the search process. Although
the way in which information is exchanged varies from work to work, a typical fea-
ture is that best performing instances of control software are shared between the
robots. These instances are typically modified using mutation by the sender or by
the receiver and become part of the subpopulation of instances explored by the re-
ceiver. (3) Robot swarms are de facto behaviorally heterogeneous, that is, at any given
moment each robot executes a different instance of control software. This does not
necessarily exclude that the robots can eventually converge to executing the same
instance of control software. (4) As each robot of the swarm is required to evalu-
ate instances of control software, the objective function must be computable relying
only on information that is locally available to the robot. This restricts the class of
tasks that are tackled in the literature (and that can be possibly tackled) using the on-
line approach. The tasks that can be tackled appear to be simpler and less diverse
than those that are tackled in the off-line approach. (5) Unfortunately, experiments
in reality are not always performed. Some studies present results in simulation only.
We can identify four different ways in which experiments are performed: a. ex-
periments are conducted in simulation only; b. the design of the control software is
conducted in simulation and then a subset of the best instances of control software
are tested on the robots (during the test the robots do not perform on-line design);

2.4. AUTOMATIC DESIGN 23

c. the design of the control software is conducted partly in simulation and partly on
the robots. The obtained control software is tested on the robots; d. the design of
the control software is conducted exclusively on the robots. The obtained control
software is tested on the robots.

One of the first studies proposing an on-line method for multi-robot systems was
published by Parker (1996b, 1997). The author proposed L-ALLIANCE, a behavior-
based control architecture that allows the on-line optimization of some internal pa-
rameters of the control software. No robot experiment is described in the articles in
which the method is introduced. Matarić (2001) surveyed various behavior-based
control architectures that allow the on-line optimization of parameters. Lee and
Arkin (2003) applied learning momentum (Clark et al., 1992) to a multi-robot sys-
tem. The task that they considered is an abstraction of capture-the-flag. Experiments
were performed in simulation only.

A number of significant studies on on-line automatic design belong to the embod-
ied evolution approach (Watson et al., 1999, 2002). In embodied evolution, an evo-
lutionary algorithm that is in charge of optimizing the control software is executed
in a distributed way. The computation is performed by the robots of the swarm
while they are situated in the operational environment. Watson et al. (1999, 2002)
developed a multi-robot system that is able to achieve phototaxis via embodied evo-
lution. In this system, each robot broadcasts a mutated version of the best instance of
control software it obtained, with a probability that is a function of its performance.
Experiments were conducted with eight custom-made two-wheeled robots. To over-
come the limited duration of the batteries and to grant a sufficient amount of time to
the design process, robots were connected to a power source using special hardware
that makes contact with an electrified floor. Similarly, Usui and Arita (2003) applied
embodied evolution to design a simple obstacle avoidance behavior on six Khepera
robots. The study includes a comparison between a group of robots that exchange
the best performing instances of control software they found and a group that does
not. The results indicate that exchanging control software is beneficial. As in Watson
et al. (2002), the limited duration of the batteries was overcome using special hard-
ware that provides a continuous power supply, in this case a pantograph that makes
constant contact with an overhead power line. Bianco and Nolfi (2004) proposed
a method that allows robots to share their internal configuration via self-assembly.
The method was tested in simulation only. König and Mostaghim (2009) departed
from the classical approach based on neural networks by proposing a control ar-
chitecture based on finite state machines optimized on-line via embodied evolution.
The tasks considered were gate passing and collision avoidance. The experiments

24 CHAPTER 2. STATE OF THE ART

were conducted in simulation only.

A few studies were devoted to the investigation of fundamental scientific ques-
tions concerning the relationship between and the combination of learning and evo-
lution. Wischmann et al. (2007) studied the relationship between learning and em-
bodied evolution in a predator-prey scenario. Experiments were performed in sim-
ulation only. Elfwing et al. (2011) investigated the combination of reinforcement
learning and embodied evolution in a survival scenario. Experiments were con-
ducted in simulation and the control software obtained was then evaluated on two
Cyber Rodent robots. The authors followed a hybrid procedure: the design was
conducted in simulation using initially a group of four robots, and then a group of
two. The resulting control software was eventually tested on the two Cyber Rodent
robots.

More recent studies shifted the focus back to the development of effective on-line
design methods. Bredeche et al. (2012) proposed MEDEA, a framework for onboard
evolution of control software based on neural networks. In MEDEA, robots are able
to adapt to environmental conditions. The experimental analysis was performed on
two tasks (survival and two suns) using twenty e-puck robots. Some precautions
were taken in the definition of the experiments: (i) to reach convergence within the
duration of the batteries, experiments were conducted using a small search space;
(ii) to allow the exchange of solutions between robots, a reliable local communication
was emulated via Wi-Fi and information provided by a tracking system. Haasdijk
et al. (2014) introduced a multi-objective variant of MEDEA called MONEE. MONEE
allows a swarm of robots to adapt its behavior to the environment and to a given task
at the same time. Experiments were performed in simulation only. Silva et al. (2015b)
introduced odNEAT, a variant of real-time NEAT (Stanley and Miikkulainen, 2002)
for the online and decentralized optimization of robot control software. Experiments
on three multi-robot tasks (aggregation, navigation with obstacle avoidance, and
phototaxis) were performed in simulation only.

A number of studies presented on-line design methods based on distributed im-
plementations of particle swarm optimization (Pugh and Martinoli, 2009). Here, we
mention only two recent studies. We refer the reader to Di Mario et al. (2015) for a
more extensive review of the relevant literature. Di Mario and Martinoli (2014) ap-
plied distributed particle swarm optimization to the onboard optimization of control
software for obstacle avoidance. The method was tested on a swarm of eight Khep-
era III robots. The experiments were performed in three different settings: (i) the
control software was designed in simulation and then tested on the robots; (ii) the
control software was designed and tested on the robots; (iii) the control software

2.5. CHALLENGES 25

was designed partly in simulation and partly on the robots, to be eventually tested
on the robots. In a similar study, Di Mario et al. (2015) presented OCBA, a noise-
resistant particle swarm optimization algorithm for the on-line automatic design of
robot control software. In this case, the on-line adaptation was performed in simu-
lation. The resulting control software was then tested on a swarm of four Khepera
III robots.

2.5 Challenges

Although a number of promising methods for the automatic design of control soft-
ware for robot swarms have been presented and discussed so far, a consolidated
literature on the topic is still missing. In some sense, we could (somehow provoca-
tively) argue that the state of the art in the automatic design of control software for
robot swarms is undefined and is yet to be properly identified. As we have seen in
Section 2.4, with the exception of a few rare cases, published studies do not produce
comparisons between different methods. Moreover, the vast majority of the articles
in which interesting automatic design methods have been introduced were tailored
to answer scientific questions that do not directly belong in automatic design. For
example, an important share of the articles devoted to evolutionary robotics were
tailored to answer scientific questions related to the plausibility of biological models
or the justification of animal behaviors in evolutionary terms. These questions are
clearly extremely fascinating and relevant in absolute terms. Nonetheless, in many
cases these questions have shadowed the core questions of the research on the auto-
matic design of control software for robot swarms. Indeed, some key questions are
hardly addressed in the current literature: Which automatic method is the best under
which conditions? How general is method X? How well does method X perform on different
tasks? Which features of a task pose problems to method X? How well does a swarm produced
by method X cross the reality gap? Questions of this nature are in our opinion funda-
mental for the development of a mature science. In particular, the development of
a solid, well-established, and consistently applied empirical practice to assess and
compare methods is of paramount importance. Within the field of artificial intel-
ligence, domains that rightfully qualify as mature science greatly invested in the
development of a proper empirical practice. Think for example of machine learning
and heuristic optimization—for example, evolutionary computation, particle swarm
optimization, and ant colony optimization. In these domains, virtually all published
articles propose an extensive experimental analysis and all newly proposed ideas are
thoroughly compared empirically against the established state of the art. Moreover,

26 CHAPTER 2. STATE OF THE ART

in these domains it is common to share benchmark problems, datasets, implementa-
tions, and results.

It is our contention that the research on the automatic design of control software
for robot swarms cannot significantly progress further unless the research commu-
nity endows itself with a strong, common empirical practice. Comparisons between
different design methods should play a much more prominent role. At every mo-
ment in time, the research community should be mindful of what is the best method
for a given problem, what is the relative performance of the available methods, and
which are the relative strengths and weaknesses of each existing method. In other
words, the state of the art should be precisely defined and every new proposed
method should be compared with it.

In the following, we discuss four main issues to be addressed in order to define
an empirical practice that is appropriate for the automatic design of control software
for robot swarms.

Reference model. To be meaningful, a comparison of design methods must be per-
formed under the same conditions for all methods under analysis. It appears
obvious that all methods must be given the same resources: computation time,
memory, simulator and simulation models, number and kind of CPUs, operating
system and hardware infrastructure, etc. It appears also obvious that the differ-
ent design methods under analysis must be requested to produce control software
for the same robotic platform. This last requirement is less trivial than one might
think. Indeed, we became convinced that simply stating which platform is con-
sidered in a study is not sufficient to guarantee that all methods under analysis
operate under the same conditions. We argue that a more formal approach is
needed: a reference model for the platform considered should be explicitly defined.
The reference model should formally define the sensors and the actuators that the
control software can access along with the relative value ranges. Ideally, the con-
trol software produced by the automatic design methods under analysis should
interact with the platform hardware via a common API. This prevents that the
experimenter introduces a bias by allowing a method to access resources or infor-
mation that is not available to other methods or to use them in a more creative and
profitable way.

Precise definition. An automatic design method should be precisely defined so as
to enable the reproducibility of its results. In particular, an automatic design
method should be univocally identified by a name, should be clearly defined in
all its parts, and should properly pinpoint the reference model(s) to which it can
be applied. Ideally, an implementation should be made publicly available. This

2.5. CHALLENGES 27

would guarantee that an automatic design method can be used by researchers
other than those who originally proposed it, and can be therefore included in ob-
jective comparative studies performed by third parties. By studying the literature
presented in Section 2.4, we realized that, to the best of our knowledge, automatic
design methods proposed so far have been tested in a single study by authors
who introduced them. In each study, researchers either present an original design
method or develop a variant of a previously presented one. In the literature, there
is no automatic design method that is used “as is” in multiple subsequent studies
on different tasks—i.e., without undergoing any ad hoc, manual, per-task modi-
fication. Moreover, we are not aware of any case in which an automatic design
method is included in a study performed by a third party. We find particularly
revealing the fact that automatic design methods are not typically given a name
by their proponents: it does not make much sense to name a method that is sup-
posed to live within the time span of a single research study. We are quite sure that
researchers would name the methods they propose if the practice in the domain
were such that newly proposed methods were expected to be included in subse-
quent studies and applied to a number of different tasks, possibly by a third party.
The fact that a method is typically tested on a single task in the original paper in
which it is proposed makes it impossible to apprise its qualities as an automatic
method. In particular, it makes it impossible to understand whether the method is
an ad hoc solution for the single task considered or it is general enough and able to
address a class of tasks. Clearly, a method that applies to a single task and needs
to be manually re-instantiated and/or fine-tuned to be applied to another task
cannot legitimately qualify as a automatic method. To serve the purpose of the
research on the automatic design of control software for robot swarm, its experi-
mental practice should take the above considerations into account. In particular,
it should prescribe that an automatic design method is tested on multiple tasks
without undergoing any ad hoc, manual, per-task modification. Moreover, each
newly proposed method should be compared with those that have been previ-
ously proposed so that a clear picture of the state of the art is always available
to the community. Independent evaluations performed by third parties would be
extremely valuable.

Benchmarks. Another important issue that should be addressed by the commu-
nity concerns the tasks on which automatic design methods should be tested and
compared. A convincing and informative experimental analysis should ideally
be based on a large set of different tasks. It should eventually allow the experi-
menter to make conclusions on the ability of the design methods under analysis

28 CHAPTER 2. STATE OF THE ART

to produce control software for a generic task of interest. Obviously, whether a
task can be possibly performed by a swarm of robots depends on the capabilities
of the robots, as formally characterized by the reference model. In other terms,
a reference model implicitly determines the class of tasks that can be performed
by a swarm of robots conforming to the reference model itself. An informative
comparison should be based on a representative subset of tasks sampled from this
class. We are convinced that the definition of publicly available datasets of bench-
mark tasks would be highly beneficial for the research on the automatic design of
control software for robot swarms and would significantly speed up its progress.
Each benchmark task should specify its target platform(s) via a reference model.
At each moment in time, the research community should have access to an up-
to-date record of the performance yielded by each automatic design method that
has been tested on each benchmark task. In this respect, having names that univo-
cally identify design methods is paramount. It would be convenient to conceive
programs that automatically generate benchmark tasks within a class. For exam-
ple, consider a program that generates instances of a search and retrieve task by
randomly sampling, according to appropriately defined probability distributions:
(i) size and shape of the environment, (ii) number and position of the obstacles,
(iii) number and the positions of the targets, (iv) initial placement of the robots,
and (v) position of the safe area to which retrieved targets should be carried. Such
a program could be used to generate multiple sets of tasks, all sharing the same
statistical properties. The experimenter could obtain two disjoint sets: one to be
used to automatically design control software, and one to be used to test it.

The definition of benchmark tasks to be used by the whole research community
could be based on widely used and commercially available robots. Indeed, some
platforms have been considered a de facto standard by many research labs for
years. For example, the Khepera (Mondada et al., 1999) and the e-puck (Mon-
dada et al., 2009b) have been adopted in a large share of swarm robotics studies.
More recently, the kilobot (Rubenstein et al., 2014a) is becoming popular and the
Thymio3 appears to meet all the requirements to become widely adopted in swarm
robotics research.

As an alternative, standard benchmark tasks could be implemented via remote
controlled labs (e.g., see Zeiger et al., 2009; Kulich et al., 2013; Casini et al., 2014;
Casan et al., 2015). For example, imagine a confined area in which a robotic arm
can position obstacles and objects as remotely specified by the experimenter. A
robot swarm could then act in the area operated by the control software to be

3https://www.thymio.org

2.5. CHALLENGES 29

tested. The robotic arm would be in charge of placing the robots at desired initial
positions for each run and of recharging them when needed.

Clearly, we do not wish to go so far as to state that all the research in swarm
robotics should be performed on standard benchmarks and be based on the afore-
mentioned platforms or via remote controlled labs. Indeed, research on previously
unexplored tasks and the development of original custom-made robots are essen-
tial elements for the advancement of the domain. Yet, we are deeply convinced
that routinely testing new proposals on standard benchmarks and common plat-
forms is the only way to consolidate results and to enable an ordered and struc-
tured accumulation of knowledge.

Robot experiments. A crucial aspect that has been often overlooked in the litera-
ture is the ability of a design method to overcome the reality gap, that is, the
unavoidable difference between the models used in computer-based simulations
and reality. The reality gap is an issue that is particularly relevant when study-
ing off-line automatic design methods. Indeed, one of the major challenges for
an off-line design method is to use computer-based simulations to design con-
trol software that, once installed on the robots, will behave as expected. Ideally,
the robot swarm should behave in reality as its simulated counterpart. Unfortu-
nately, this challenge is far from being overcome. Potentially, the reality gap is an
issue also in the study of on-line methods as a large share of the research work
on this methods relies on computer-based simulations. Due to the reality gap,
automatic design methods (either on-line or off-line methods) cannot be properly
assessed only via simulations, at least in this historical moment. We are firmly
convinced that robot experiments should have a much more prominent role in
the research on the automatic design of control software for robot swarms. They
should be the core of the whole empirical practice in the domain. Increasing the
prominence of robot experiment has unfortunately a downside: it raises the cost
of research. Yet, we are convinced that, at least in this phase of the development of
the domain, robot experiments are indispensable and their cost unavoidable. It is
common in many domains that researchers need costly resources to perform their
studies. For example, research in particle physics and in observational astronomy
require having access to a collider and a telescope, respectively. These resources
are expensive—much more than a robot swarm. Most research groups do not own
them and need to get access to those shared by other groups. Even those that do
own the resources, often are not fully satisfied with them and need to get access to
alternative resources owned by other groups. Indeed, each collider and telescope
is different (energy range, resolution, location, etc.) and researchers often need to

30 CHAPTER 2. STATE OF THE ART

access more than one of them to confirm observations or to calibrate their methods
and tools. It is therefore customary that these resources are shared in the context
of international cooperation programs. Although the domains of particle physics
and observational astronomy are deeply different in many respects from swarm
robotics, we are convinced that the mechanisms used to share resources within
these two domains could serve as a model also for our community. In particular,
we envision international cooperation programs within the research community
that investigates the automatic design of control software for robot swarms. Re-
search groups could share their resources with partner groups so that each par-
ticipant in the cooperation program can test their automatic design methods on
different platforms and/or under different experimental conditions. When the re-
search groups own identical robots, they could join their resources and perform
experiments with a swarm larger than the one they own. The collaboration would
be the ideal context to compare the different automatic design methods developed
by the partners and conceive possible cross-fertilizations.

2.6 Summary

In this chapter, we gave a general introduction to swarm robotics with the goal of
introducing the problem of automatic design of robot swarms. Swarm robotics is an
appealing domain of robotics in which a given mission is tackled by a large group
of robots, the swarm. The swarm is a distributed system based on individual au-
tonomous robots that collaborate and interact without any kind of central control
or knowledge. Notwithstanding the simplicity of the individual robot, the swarm
is able to show quite complex collective behaviors. Swarm robotics is appealing
because it promotes the development of systems that are fault tolerant, scalable and
flexible. Such properties are desirable in many applications such as patrolling, ware-
house automation, agriculture and medicine.

The main problem in swarm robotics is the design of the behavior of the indi-
vidual robots: robot swarms are immaterial entities, and as such, cannot be pro-
grammed directly. This problem can be tackled using manual or (semi-)automatic
design methods.

In this chapter, we reviewed the most notable achievements in the design of con-
trol software for robot swarms with a particular focus on automatic design meth-
ods. These achievements show that automatic methods are a viable and promising
approach to the design of control software for robot swarms. Unfortunately, the lit-
erature on the automatic design of control software for robot swarms appears to be

2.6. SUMMARY 31

scattered and composed of isolated contributions: no comparisons between design
methods are provided and new ideas and methods are not properly assessed against
a well-established state of the art. It is our contention that the lack of an empirical
practice hinders the progress of the domain.

In the body of the chapter, we highlighted four issues that need to be addressed
to establish a proper empirical practice for the automatic design of control software
for robot swarms: (i) Every study that proposes or applies an automatic design
method should clearly define a reference model for the robotic platform considered.
(ii) Every automatic design method should be precisely defined in all its parts and
parameters, and univocally identified by a name. (iii) Libraries of standard bench-
marks should be defined and adopted by the community for assessing newly pro-
posed methods and ideas. (iv) Robot experiments should be the ultimate way to
assess methods for the automatic design of control software for robot swarms and
should be an essential element of any research study in the domain.

We are convinced that a solid, well-established, and consistently applied empiri-
cal practice would allow the community to promote the best ideas proposed so far,
to focus on promising directions, and to attract further researches and investments
to the domain of automatic design of control software for robot swarms.

The achievements and the flaws found in the literature have a strong influence
on this thesis. In particular, overcoming these flaws constitutes an important share
of the original contribution of this thesis: For instance, in this thesis, we stress the
importance of the definition of a reference model and we officially define what is,
to the best of our knowledge, the first reference model in the swarm robotics lit-
erature. The original method proposed in this thesis is precisely defined and it is
univocally identified with the name AutoMoDe. We define a proto-library of bench-
marks that allows the performance assessment of design methods on different and
clearly-defined tasks. For the performance assessment of the design methods under
analysis we use an experimental protocol that relies heavily on robot experiments.

32 CHAPTER 2. STATE OF THE ART

Chapter 3

From a novel perspective on the reality
gap to AutoMoDe

In this chapter, we describe the intuition that is the starting point of the thesis: the
reality gap bears a strong resemblance to the generalization problem faced in su-
pervised learning. Following this intuition, we cast the reality gap in terms of the
bias-variance tradeoff as formalized in the machine learning literature: past an op-
timal level, increasing the complexity of the approximator (or the design effort) is
counterproductive because it hiders the generalization abilities of the approximator
itself. We believe that the reality gap experienced in the automatic design of robot
swarms is a similar phenomenon and we formulate two working hypotheses that
will be corroborated in this thesis: hp1) past an optimal level, increasing the rep-
resentational power of the control architecture is counterproductive; hp2) past an
optimal level, increasing the design effort is counterproductive. In both cases, past
an a priori unknown optimal level, the performance obtained in simulation and the
one obtained in reality diverge: the performance in simulation increases while the
one in reality decreases.

In this thesis, we will corroborate the two hypotheses. Hypothesis hp1 occupies
a more prominent role as it is the inspiration for the introduction of AutoMoDe,
the core contribution of this thesis. AutoMoDe is an automatic design method that,
while having a control architecture with low representational power, is able to tackle
tasks of interest in swarm robotics. We corroborate hypothesis hp2 in this chapter
via an experiment with a swarm of e-puck robots.

The rest of the chapter is organized as follows: In Section 3.1, we describe the
reality gap problem. In Section 3.2 we describe the theoretical framework and the
hypotheses. In Section 3.3, we introduce AutoMoDe. In Section 3.4, we present the
experimental study to corroborate hypothesis hp2. In Section 3.5, we conclude with

33

34 CHAPTER 3. AUTOMODE

a summary of the chapter.

3.1 The reality gap problem

The reality gap problem (Brooks, 1992; Jakobi et al., 1995) is one of the major issues
to be faced in evolutionary swarm robotics—and in all automatic design methods
that rely on simulation. The reality gap is the intrinsic and unavoidable difference
between reality and simulation. As a consequence of the reality gap, differences
should be expected between how an instance of control software designed in simu-
lation behaves in reality.

Several techniques have been proposed to mitigate this problem. For example,
Miglino et al. (1995) increased the realism of simulation using samples of the re-
sponses of the robot’s sensors and actuators; Jakobi (1997) suggested the inclusion
of noise in the simulation of sensors and actuators and in the conditions experi-
enced by the robots during the design process; more recently, Bongard et al. (2006)
and Koos et al. (2013b) alternated simulation with tests on the physical system to
correct the simulator nuisances. The reality gap problem is a specific instance of a
wider problem related to the generalization abilities of evolutionary robotics—and
of any automatic design approach—that is, the overfitting of the solution to the par-
ticular conditions encountered during the design process. By continuously refining
the control software in a subset of the possible operating conditions, the control soft-
ware is optimized “to match the specificities of the simulation, which differ from the
real world.” (Floreano et al., 2008).

Our contention is that the inability to generalize to unexperienced working con-
ditions in the automatic design of robot swarms bears a similarity with the general-
ization problem faced in supervised learning.

3.2 Facts and Hypotheses

Neural networks have been studied for over seven decades, with alternating for-
tune —e.g., McCulloch and Pitts (1943); Rosenblatt (1958); Minsky and Papert (1969);
Werbos (1974); Cybenko (1989). Around the year 2000, neural networks appeared to
be superseded by other learning methods. They regained the general attention of
researchers and practitioner in the last decade, thanks to the major success of deep
learning—e.g., see Schmidhuber (2015). In the context of our reasoning, we are inter-
ested in scientific facts about neural networks and their generalization capabilities
that where established mostly in the 1990’s. In particular, we are interested in the

3.2. FACTS AND HYPOTHESES 35

error

variance

bias

complexity

er
ro
r

optimal complexity

Figure 3.1: Decomposition of the error into a bias and a variance component.

relationship between prediction error and two characteristics: (1) the complexity of
the neural network; and (2) the amount of training effort.

A fundamental result for understanding the relationship between error and com-
plexity is the so called bias/variance decomposition (Geman et al., 1992).1 It has been
proved that the prediction error can be decomposed into a bias and a variance com-
ponent. Low-complexity neural networks—i.e., those with a small number of hid-
den neurons and therefore low representational power—present a high bias and a
low variance. Conversely, high-complexity neural networks—i.e., those with a large
number of hidden neurons and therefore a high representational power—present a
low bias and a high variance. As the bias and variance components combine addi-
tively, the error presents a U shape: for an increasingly large level of complexity, the
error first decreases and then increases again. This implies that high complexity (i.e.,
high representational power and low bias) is not necessarily a positive characteris-
tic: indeed an optimal value of the complexity exists. Beyond that value, prediction
error increases. See Figure 3.1 for a graphical illustration of the concept. In other
terms, a complex network (i.e., high number of neurons and therefore high repre-
sentational power) is able to learn complex functions but then generalizes poorly.
Indeed, it is an established fact that the higher the complexity of a neural network
(as of any functional approximator), the lower is the error on the training set and
the higher is the error on a previously unseen test set—provided that we are beyond
the optimal complexity. This fact is graphically represented in Figure 3.2a: past the
optimal level of complexity, the errors on training set and test set diverge.

Concerning the relationship between prediction error and training effort, a sec-

1In statistics, the bias of an estimator is the difference between estimator’s expected value and the true value
of the parameter being estimated. The variance represents the variability of the values estimated by the estima-
tor. For a more advanced and general treatment of the issue, see also Wolpert (1997).

36 CHAPTER 3. AUTOMODE

Supervised Learning Automatic Design

complexity of approximator

pr
ed

ic
tio

n
er

ro
r

test set

training set

low bias
high variance

high bias
low variance

(a) Error on training and test sets vs complexity
of approximator.

representational power of control architecture

pe
rf

or
m

an
ce

reality

simulation

low bias
high variance

high bias
low variance

hp1

(b) Performance in simulation and reality vs
representational power of the control architec-
ture. Hypothesis hp1.

training e�ort

pr
ed

ic
tio

n
er

ro
r

test set

training set

(c) Error on training and test sets vs training
effort.

design e�ort

pe
rf

or
m

an
ce

reality

simulationhp2

(d) Performance in simulation and reality vs
design effort. Hypothesis hp2.

Figure 3.2: Conceptual relationship between the bias-variance tradeoff in supervised learn-
ing and in automatic design (a/b) and between overfitting in supervised learning and overde-
sign in automatic design (c/d).

ond important fact has been established, which goes under the name of overfitting—
or alternatively overtraining. Overfitting is the tendency of a neural network (as of
any functional approximator) to overspecialize to the examples used for training,
which impairs its generalization capabilities. As a result of overfitting, one can ob-
serve that if the learning process is protracted beyond a given level, the error on
the training and test sets diverge. Indeed, past an optimal level of the training ef-
fort, which is typically unknown a priori, the error on a previously unseen test set
increases, while the one on the training set keeps decreasing. This fact is graphically
represented in Figure 3.2c.

3.2. FACTS AND HYPOTHESES 37

It should be noted that the two facts illustrated in Figures 3.2a and 3.2c are strictly
related. The former considers the case in which the level of training effort is fixed
and the complexity of the approximator is varied; the latter considers the dual case
in which the complexity of the approximator is fixed and the amount of training
effort is varied. In both cases, past an a priori unknown level of the independent
variable, the error on the training and test sets diverge.

Several ideas have been proposed to deal with these facts and produce so called
robust learning methods. The most notable ones are cross-validation and regular-
ization techniques—e.g., see Stone (1974); Bauer et al. (2007). In the context of this
chapter, it is worth mentioning a technique known as early stopping, which consists in
halting the learning process before the error on training and test set start to diverge—
e.g., see Morgan and Bourlard (1990); Prechelt (1998); Caruana et al. (2001); Raskutti
et al. (2014).

As stated in Section 3.1, it is our contention that the reality gap problem faced
in automatic design of robot control software is reminiscent of the generalization
problem faced in supervised learning. If the two problems are indeed sufficiently
similar, one should be able to observe in the automatic design the counterparts of
the facts illustrated in Figures 3.2a and 3.2c. In particular, one should observe that
the performance in simulation and reality diverge: (hp1) for an increasing level
of representational power of the control architecture—Figure 3.2b; and (hp2) for an
increasing level of the design effort2—Figure 3.2d. The only difference between Fig-
ures 3.2a and 3.2b (and between Figures 3.2c and 3.2d) is that the former concerns
the minimization of error, while the latter the maximization of performance. On Fig-
ures 3.2b and 3.2d, we superimposed a large question mark to signify that these
plots represent hypotheses, as opposed to the plots appearing on their left, which
represent established scientific facts supported by a vast literature.

Hypothesis hp1 depicted in Figures 3.2b inspired us the definition of AutoMoDe,
an automatic design method that has a lower representational power (i.e., lower
complexity) than the neural networks typically adopted in evolutionary robotics.
The expected result is that when comparing AutoMoDe with a control architecture
with a higher representational power (i.e., a neural network), we expect the neural
network to perform better than automode in simulation, but worse in reality. Auto-
MoDe, described in Section 3.3, represents the core contribution of this thesis.

Hypothesis hp2 depicted in Figure 3.2d inspired us in the definition of the exper-
iment presented in Section 3.4. The goal of the experiment is to verify whether, for
a sufficiently large design effort, the performance in simulation and reality of auto-

2the term design effort is the counterpart in the context of the automatic design of robot swarm of the term
training effort used in machine learning.

38 CHAPTER 3. AUTOMODE

matically designed control software tend to diverge. As this phenomenon would be
the automatic design counterpart of overfitting, we shall call it overdesign.

3.3 Performance vs Representational Power: Introducing AutoMoDe

AutoMoDe (automatic modular design) is an automatic approach inspired by hy-
pothesis hp1, which claims that high representational power of the control architec-
ture can be counterproductive. AutoMoDe adopts a control architecture that fea-
tures a lower representational power compared to the neural networks that are typ-
ically used in evolutionary robotics.

AutoMoDe generates control software in the form of a probabilistic finite state
machine. We chose probabilistic finite state machines as a control architecture be-
cause they are commonly used in the manual design of robot swarms due to their
modularity and readability. Probabilistic finite state machines are composed of states
and transitions. In AutoMoDe, states are chosen among a set of preexisting con-
stituent behaviors and transitions are defined on the basis of a set of preexisting con-
ditions. In the following, we will collectively refer to constituent behaviors and con-
ditions as modules. AutoMoDe automatically searches for the best combination of
modules to perform a given task.

Each constituent behavior is an activity that the robot can perform. Constituent
behaviors have a set of parameters that regulate their internal functioning. Parame-
ters allow AutoMoDe to fine-tune constituent behaviors and fit different situations.
Different instances of the same constituent behavior can be obtained by assigning
different values to the parameters and can coexist in the same probabilistic finite
state machine.

Conditions are used to trigger transitions from a constituent behavior to another
one in response to a particular event. Similarly to constituent behaviors, conditions
can be fine-tuned through a set of parameters and can be instantiated multiple times
in the same probabilistic finite state machine.

The output of AutoMoDe is thus a combination of specific instances of modules
where the parameters of the modules and the topology of the connections are opti-
mized for the task at hand. AutoMoDe explores a search space that is represented
by all the possible probabilistic finite state machines that can be obtained by instan-
tiating and combining the given modules. Within AutoMoDe, the exploration of
the search space can be performed using any optimization algorithm that is deemed
appropriate.

In AutoMoDe, the fact that the control software is obtained by selecting, assem-

3.3. PERFORMANCE VS REPRESENTATIONAL POWER 39

bling, and fine-tuning some given modules introduces a bias and reduces the rep-
resentational power: the control software produced is a priori constrained to belong
to the space of the finite state machines that can be composed out of the given mod-
ules. This limits the possibility to fine-tune the dynamics of the robot-robot and
robot-environment interaction. As we will show in the experimental results pre-
sented in Chapter 4, if the set of modules is appropriately defined, the bias that is
introduced reduces the variance and increases the generalization capabilities of the
obtained control software.

3.3.1 The specialization of AutoMoDe

AutoMoDe is a general framework that needs to be specialized: i) AutoMoDe has to
be adapted to the given robotic platform, and ii) the optimization process has to be
defined. In the following, we will refer to the person that performs the specialization
of AutoMoDe for a specific platform as the expert.

The expert specializes AutoMoDe for a specific platform on the basis of a refer-
ence model, an abstraction of the robotic platform that specifies in formal terms its
characteristics and capabilities. The reference model defines the way in which we
think of the robots and the way in which we intend the interaction of a robot with
the environment and with other robots. In particular, the reference model defines an
interface between the hardware layer and the logic layer represented by the control
software. As an example, the reference model of a platform featuring an ambient
light sensor could include the capability to distinguish between night and day. This
capability could take the form of a Boolean variable that is updated by the hardware
every, say, 100 ms and that can be read by the control software.

The reference model implicitly defines the tasks that can be performed using a
swarm composed of robots of instances of the given robotic platform. For example,
a task that requires separating blue objects from green objects cannot be performed
by robots that are unable to distinguish green from blue. In order to undertand
the relationship between tasks and reference model, we define the classes TSR and
BRM : TSR is the class of behaviors that allow the swarm to perform tasks relevant
to swarm robotics; BRM is the class of all the behaviors that can be produced by a
robot swarm conforming to the reference model. The intersection of TSR and BRM

gives the class T of behaviors that perform tasks relevant to swarm robotics and that
can be produced by robots conforming to the given reference model. The class T is
a proper subset of BRM : indeed many behaviors contained in BRM do not have any
practical relevance to swarm robotics and therefore do not belong to TSR.

On the basis of the reference model, the expert must produce the set of modules

40 CHAPTER 3. AUTOMODE

BRM

TSR

B’

T’

T

Figure 3.3: Graphical representation of the classes of behaviors and the corresponding tasks.
TSR is the class of behaviors that perform tasks of interest in swarm robotics. BRM is the class
of behaviors that can be produced by a swarm of robots conforming to the reference model.
T = TSR ∩BRM is the class behaviors that perform tasks relevant to swarm robotics and that
can be produced by robots conforming to the reference model. B′ is the class of behaviors
that can be produced by the set of modules of the specialization of AutoMoDe. Assuming
that the expert implements the modules correctly, B′ ⊂ BBM and the specialization of Au-
toMoDe has a relatively low representational power. T ′ = T ∩ B′ is the class of behaviors
that perform relevant tasks and that can be obtained by combining the set of modules. In
the ideal case, T ≡ T ′ ≡ B′, the specialization of AutoMoDe has the lowest representational
power that allows to cover all the possible tasks of interest, given the reference model at
hand.

that will be used by the specialization of AutoMoDe that is intended to produce con-
trol software for the corresponding platform. The set of modules implicitly defines
the class B′ of behaviors that can be produced by a swarm of robots whose control
software is obtained by assembling the modules themselves. The relationship be-
tween the classes BRM and B′ defines the representational power of the obtained
control architecture: assuming that the expert implements the modules correctly, it
has to be expected that many behaviors belonging to BRM that do not have a prac-
tical relevance will not belong to B′. In this case, B′ is a proper subset of BRM and
consequently, the obtained control architecture features a reduced representational
power. The intersection between the classes B′ and T reppresents the class T ′ of be-
haviors that can be designed by the specialization of AutoMoDe and that perform
tasks of interest. Figure 3.3 gives a graphical representation of the different classes.

In the ideal case, the set of modules perfectly and exhaustively exploits all the
capabilities provided by the reference model and T ′ ≡ T . In practice, it has to be
expected that the set of modules produced by the expert fails to suitably exploit
some of the capabilities provided by the reference model, with the result that T ′ will
be a proper subset of T . In this process of specialization, the experience of the expert
plays an important role. Indeed, the expert defines the constituent behaviors and

3.4. PERFORMANCE VS TRAINING EFFORT 41

the conditions by taking inspiration from those that have been previously presented
in the literature and is guided by their personal understanding of what tasks are
relevant in swarm robotics.

It has to be noticed that the specialization of AutoMoDe to a given reference
model is task independent and has to be done only once: the same set of modules
will be then used to design the control software for any task that one will subse-
quently wish to tackle with the given platform. It will be clearly unrealistic to ex-
pect that a specialization of AutoMoDe for a reference model is able to perform a
task t 6∈ T . On the other hand, given the current understanding of swarm robotics,
whether any task t ∈ T can be performed via a set of modules produced by the
expert—that is, whether T ′ ≡ T—is an empirical question.

Concerning the definition of the optimization process, a number of elements have
to be selected including: the optimization algorithm to span the space of possible
control software; a way to initialize the optimization algorithm; possible constraints
on the finite state machine to be produced—e.g., the maximum number of states
and of outgoing transitions for each state; and a way to assess the performance of
a candidate control software. We foresee that, to assess the performance of control
software candidates, the optimization process will typically rely on computer-based
simulations. The specialization of AutoMoDe for a specific robotic platform involves
therefore also the selection of an appropriate simulator of the robotic platform at
hand.

In the thesis, we present two specializations of AutoMoDe. We present Vanil-
la and Chocolate in Chapter 4 and Chapter 5, respectively. Both Vanilla and
Chocolate are specialization of AutoMoDe for the e-puck robot. The results pre-
sented in Chapters 4 and 5 corroborate hypothesis hp1 that claims that high rep-
resentational power can be counterproductive: AutoMoDe, which adopts a control
architecture with relatively low representational power, performs better than design
methods that adopt control architectures with higher representational power.

3.4 Performance vs Training Effort: A proof-of-concept experiment

The aim of the experiment presented in this section is to corroborate hypothesis hp2
depicted in Figure 3.2d: past an unknown level of training effort the performances in
simulation and in reality diverge. In this section, we present the material adopted in
the experiment, the automatic design method, the task, the protocol, and the results.

42 CHAPTER 3. AUTOMODE

Figure 3.4: Front and side view of an e-puck robot and a tag used to localize the robot via
a ceiling-mounted camera. The epuck robot features an omnidirectional camera that is not
used in the study—the reference model does not include it.

3.4.1 Robot platform and reference model

The experiment presented in this chapter is performed with a swarm of e-puck robots
extended with the Overo Gumstick, a ground sensor, and a range-and-bearing board—
see Figure 3.4 for a picture of the platform. The e-puck robot is a small wheeled
robot designed for research and education (Mondada et al., 2009b,a). It is equipped
with 8 IR transceivers that can be used as both light and proximity sensors. The
IR transceivers are distributed around the body of the robot as shown in Figure 3.5.
The Overo Gumstick is a single-board computer that allows the e-puck to run Linux.
The ground sensor comprises 3 IR transceivers positioned in the front of the robot
and pointed downward to measure the reflectivity of the ground. The range-and-
bearing board (Gutiérrez et al., 2009) comprises 12 IR emitters and 12 receivers that
are equally distributed along the perimeter of the board and pointed radially and
outwards, on the horizontal plane. The range-and-bearing board allows the e-puck
to send and receive messages within a range of about 0.7 m. When an e-puck re-
ceives a message via the range-and-bearing board, it also obtains information about
the relative position of the sender.

The reference model that we adopt for the platform described above is given in
Table 3.1. We call this reference model RM1. According to the reference model RM1,
the control software has a control cycle of 100 ms. At each control step, the control
software makes decisions based on the variables prox i, light i, gnd i, n, rm, and ∠bm,
which abstract the proximity, light, ground sensors, and range-and-bearing read-

3.4. PERFORMANCE VS TRAINING EFFORT 43

q1

fo
rw

ar
d

1

2

8

7

36

5 4

(a) IR transceivers.

fo
rw

ar
d

1

2

3

12

11

10

9 4

58

67

(b) Range-and-bearing receivers.

Figure 3.5: Position of the IR transceivers and of the range-and-bearing receivers around
the body of the e-puck. The e-puck features four IR transceivers in the front, two in the
back, and two on the sides. The angle q1 represents the angle at which the IR transceiver 1
is positioned with respect to the head of the e-puck. The e-puck features range-and-bearing
receivers that are equally distributed around the body of the e-puck.

Table 3.1: Reference model RM1—prox i is the reading of the i-th proximity sensor and ∠qi
is the angle at which the i-th proximity sensor is positioned with respect to the head of the
robot; light i is the reading of the i-th light sensor and ∠qi is the angle at which the i-th light
sensor is positioned with respect to the head of the robot; gnd i is the reading of the i-th
ground sensor; n is the number of robots perceived in the neighborhood; rm and ∠bm are
respectively the range and bearing of the m-th neighbor; vl and vr are respectively the speed
of the left and right wheel; and v̄ is the maximum speed of the robot. Sensors and actuators
are updated with a period of 100 ms.

Sensors/Actuators Variables
Proximity prox i ∈ [0, 1], ∠qi, with i ∈ {1, 2, . . . , 8}
Light light i ∈ [0, 1], ∠qi, with i ∈ {1, 2, . . . , 8}
Ground gnd i ∈ {0, 0.5, 1}, with i ∈ {1, 2, 3}
Range and bearing n ∈ N and rm,∠bm, with m ∈ {1, 2, . . . , n}
Wheels vl, vr ∈ [−v̄, v̄], with v̄ = 0.16 m/s

Period of the control cycle: 100 ms

44 CHAPTER 3. AUTOMODE

ings. On the basis of the decision made, the control software can set the variables
vl and vr, which abstract the actuators that operate on the wheels. Specifically, prox i
can assume values in the range [0, 1]. It is equal to 0 when the i-th proximity sensor
does not perceive obstacles within a 0.03 m range, while it is equal to 1 when the
obstacle is closer than 0.01 m. Variable light i can assume values in [0, 1]. It is equal to
0 if the i-th light sensor perceives only the ambient light, while it is equal to 1 when
the sensor saturates.3 Variable gnd i can assume only three values. It is equal to 0,
0.5 or 1 when the i-th ground sensor detects, respectively, a black, a gray, or a white
floor. Variable n is the number of robots in the neighborhood, as perceived via the
range-and-bearing board. Variables rm and ∠bm are the range and bearing of each
robot m in the neighborhood. Variables vl and vr define the speed of the wheels.
They are constrained in [−v̄, v̄], with v̄ = 0.16 m/s being the maximum speed of the
e-puck.

3.4.2 Design Method

The design method used in the experiment presented in this chapter is EvoStick.
We defined EvoStick as a typical evolutionary robotics method that implements
the current best practice in the automatic design of robot swarms. As in the literature
there is no definition of a “standard” method of evolutionary robotics, we defined it
ourself. We called it EvoStick because our intention is to use it as a yardstick for the
evaluation of other design methods. In particular, we will use EvoStick in Chap-
ters 4 and 5 to evaluate the performance of Vanilla and Chocolate. EvoStick
is the same method that we have already successfully used in the experiments pre-
sented in Francesca et al. (2012).

EvoStick is based on the reference model RM1. Each robot is controlled by a
fully connected, feed-forward neural network whose control cycle has a period of
100 ms, as specified by the reference model. The neural network has 24 inputs, 2
outputs and no hidden units. The inputs are based on the capabilities defined by the
reference model: 8 proximity sensors prox i ∈ [0, 1], i ∈ {1, 2, . . . , 8}; 8 light sensors
light i ∈ [0, 1], i ∈ {1, 2, . . . , 8}; 3 ground sensors gnd i ∈ {0, 0.5, 1}, i ∈ {1, 2, 3}; and
5 aggregated inputs from the range-and-bearing board. The aggregated inputs from
the range-and-bearing board are: z̃(n) = 1 − 2/(1 + en), where n is the number of
robots perceived; and the scalar projections of ~wr&b =

∑n
m=1 (1/rm, ∠bm) on the four

unit vectors that point at 45◦, 135◦, 225◦, and 315◦ with respect to the head of the robot.
The activation of the output neurons is computed as the weighted sum of all input
units plus a bias term, filtered through a standard logistic function. The outputs of

3RM1 assumes that, besides the ambient light, at most one light source is present in the environment.

3.4. PERFORMANCE VS TRAINING EFFORT 45

the neural network are scaled in [−vm, vm], with vm = 0.16 m/s, as specified by the
reference model, and are used to set the speed of the two wheels.

The neural network is characterized by a set of 50 parameters. Each parameter is
a real value in [−5, 5]. These parameters are optimized via a standard evolutionary
algorithm. The cardinality of the population is 100. The initial population is ran-
domly generated. At each iteration, each individual in the population is evaluated
through 10 simulations performed using ARGoS’ 2D dynamic physics engine (Pin-
ciroli et al., 2012). The following population is generated via elitism and mutation.
The elite composed of the 20 best individuals is included unchanged. The rest of
the population is obtained from the elite via mutation: parameters are modified by
adding a random value drawn from a normal distribution with mean 0 and variance
1. The evolutionary algorithm stops after a predefined number of iterations.

EvoStick implements the current best practice to mitigate the reality gap prob-
lem: A simulated uniform noise of 5% is added on the proximity, ground and light
sensors and on the wheels actuator—as suggested by Jakobi et al. (1995). The noise
of the range-and-bearing board follows a model defined using empirical data—as
suggested by Miglino et al. (1995).

3.4.3 Task

A swarm of N = 20 e-pucks must perform an aggregation task. The environment
is a dodecagonal arena of 4.91 m2 surrounded by walls—see Figure 3.6. The floor
is gray, except two circular black areas, a and b. These areas have the same radius
of 0.35 m and are centered at 0.60 m from the center of the arena. The swarm must
aggregate on either a or b. At the beginning of the run, each robot is randomly
positioned in the arena. The run lasts for T = 240 s during which, the robots move in
the arena according to their control software. At the end of a run, the performance
of the swarm is computed using the objective function

F = max(Na, Nb)/N, (3.1)

where Na and Nb are the number of e-pucks that, at the end of the run, are on a and
b, respectively, and N is the total number of e-pucks. The objective function ranges
from 0, when no e-puck is either on a or b, to 1, when all e-pucks are either on a or b.

3.4.4 Protocol

The experiment comprises two phases. In Phase 1, EvoStick is run 30 times for 256
iterations each. In order to evaluate the performance of the swarm at different levels

46 CHAPTER 3. AUTOMODE

Figure 3.6: Arena and twenty e-
pucks.

reality

simulation
∆s

∆r

∆s and ∆r are signi�cant according
to Wilcoxon (α = 0.05)

0

.5

1

4 16

64 256

design e�ort (iterations)
pe

rf
or

m
an

ce

Figure 3.7: Results of the experiment.

of the design effort, for each run of EvoStick we collect the best neural network
produced at four different stages: iteration 4, 16, 64, and 256. In Phase 2, we evalu-
ate the neural networks collected in Phase 1. Each neural network is evaluated once
in simulation and once in reality. The evaluation is performed under the same ex-
perimental conditions of Phase 1. Concerning the evaluation in reality, we reduced
human intervention as much as possible to avoid biasing the results: (1) the control
software is automatically uploaded to each e-puck via the infrastructure described
in Garattoni et al. (2015); (2) the performance of the swarm is formally evaluated us-
ing the objective function defined in Equation 3.1 and is computed automatically via
the tracking system described in Stranieri et al. (2013); (3) the tracking system is also
used to automatically drive the robots to random initial positions at the beginning
of each evaluation (Stranieri et al., 2013).

3.4.5 Results

Figure 3.7 summarizes the results. Visually, the two curves representing the aver-
age performance in simulation and reality closely resemble the hypothetical ones
that we sketched in Figure 3.2d. In particular, between iteration 64 and 256 of the
evolutionary algorithm, the performance in simulation increased while the one in
reality decreased. To confirm that the observed trends are a genuine phenomenon
rather than simply random fluctuations, we used the paired Wilcoxon signed rank
test (with 95% confidence level) to analyze the performance difference between it-
eration 64 and 256. We did this for both curves. In both cases, the null hypothesis
we tested is that the performance at iteration 64 and 256 is the same and that the ob-

3.5. SUMMARY 47

served differences are the result of random fluctuations. As alternative hypotheses
we used those suggested by Figure 3.2d: from iteration 64 to 256, the performance
in simulation increases while the one in reality decreases. In both cases, the obser-
vations reject the null hypothesis in favor of the alternative.

3.4.6 Discussion

The results corroborate our hypothesis that the reality gap problem bears strong re-
semblance to the generalization problem faced in supervised learning. In particular,
the results highlight a phenomenon that we shall call overdesign: as the training effort
increases, past an optimal value, the performance that an automatically designed
swarm obtains in reality diverges from the one it obtains in simulation.

The results presented in this study are preliminary, as they concern a single au-
tomatic design method and a single task. To establish overdesign as a scientific fact,
further experimental work is needed and should involve a sufficiently large number
of automatic design methods and tasks. Nonetheless, the results presented here are
in line with our expectations and corroborate our hypothesis hp2. Moreover, they
are in line also with similar results previously obtained in the automatic fine-tuning
of the parameters of metaheuristics. Within that context, Birattari (2009) devised an
experiment in which an iterated local search algorithm is fine-tuned on an instance
of the quadratic assignment problem and is then tested on another instance of the
same problem. The author recorded the cost of the best solution found by the algo-
rithm on the two instances as a function of the tuning effort. The results show that,
past an optimal value of the tuning effort, the costs diverge: on the tuning instance
the cost keeps decreasing, while on the test instance it starts increasing. In the con-
text of the automatic fine-tuning of metaheuristics, the phenomenon observed has
been named overtuning.

These results suggest that one should check whether the control software ob-
tained upon convergence of the design process is indeed the one that perform the
best in reality. Moreover, these results suggest that a form of early stopping could be
beneficial.

3.5 Summary

In this chapter, we presented the core intuition of the thesis: the reality gap prob-
lem bears a strong resemblance to the generalization problem of machine learning.
To exploit this resemblance, we tackle the reality gap using tools that are similar to

48 CHAPTER 3. AUTOMODE

those used when dealing with the generalization problem in machine learning. Tak-
ing inspiration from the concept of bias-variance tradeoff, we defined two working
hypotheses, hp1 and hp2. Hypothesis hp1 relates the representational power of the
control architecture with the performance of the robot swarm; hypothesis hp2 re-
lates the design effort with the performance of the robot swarm. In both cases, past
an optimal and a priori unknown level, increasing the representational power of con-
trol architecture (or the design effort) is counterproductive: while the performance
in simulation increases, the performance in reality decreases.

We were inspired by hypothesis hp1 to devise AutoMoDe. AutoMoDe is an au-
tomatic design approach that aims at mitigating the effects of the reality gap by
adopting a control architecture with limited representational power. In AutoMoDe,
the control architecture is a probabilistic finite state machine where states and tran-
sitions are pre-existing parametric modules. AutoMoDe designs control software by
automatically combining and instantiating such parametric modules. In Chapters 4
and 5 we will present two specializations of AutoMoDe and we will assess them
empirically.

We corroborated hypothesis hp2 via a proof-of-concept experiment with a swarm
of e-puck robots. In this experiment, EvoStick, a design method based on evolu-
tionary robotics, designed control software for a swarm of 20 e-pucks in order to
tackle an aggregation task. We observed that, past an optimal level of the design
effort, the longer the design process is protracted, the better the performance of the
swarm became in simulation and the worst in reality. We called this phenomenon
overdesign. Overdesign is the automatic design counterpart of the well known over-
fitting problem encountered in machine learning.

The contribution of this chapter goes beyond the introduction of AutoMoDe and
the experiment we devised to corroborate hypothesis hp2. In Section 3.4, we ad-
dressed some of the challenges presented in Section 2.5: We defined the reference
model RM1 that formally describes the platform at hand. Moreover, we precisely
defined a design method, EvoStick; we set its parameters; and we identified it
univocally for future reference by giving it a name. Finally, we assessed EvoStick

empirically with a robot experiment that comprises 120 runs with 20 e-pucks.

Chapter 4

AutoMoDe-Vanilla

This chapter describes the first study devoted to the empirical assessment of the
core ideas of AutoMoDe. We perform this assessment using AutoMoDe-Vanilla
(hereafter Vanilla), a proof-of-concept specialization of AutoMoDe for the e-puck
robot. More precisely, Vanilla is specialized for a particular reference model of the
e-puck. This reference model formally describes the characteristics of the version
of the platform we consider and the functionalities that are made available to the
control software.

We evaluate Vanilla using two tasks commonly studied in the swarm robotics
literature: aggregation and foraging. The results obtained show that Vanilla auto-
matically designs control software that allows the swarm to successfully accomplish
the two tasks. Moreover, the control software designed by Vanilla is readable and
understandable for a human.

The rest of the chapter is organized as follows: In Section 4.1, we introduce Va-
nilla. In Section 4.2, we describe the experimental protocol and the setup we use
to evaluate Vanilla. In Section 4.3, we present the results and, in Section 4.4, we
discuss them. Finally, in Section 4.5, we conclude with a summary of the chapter.

4.1 Proof of concept: AutoMoDe-Vanilla

Vanilla is a proof-of-concept specialization of AutoMoDe. Our goal in this chapter
is not to define the ultimate automatic design method, but to show that the core
ideas of AutoMoDe are valid. For this reason, Vanilla is unsophisticated in many
respects such as the way in which probabilistic finite state machines are represented
and optimized.

49

50 CHAPTER 4. AUTOMODE-VANILLA

4.1.1 Robot platform and reference model

Vanilla is specialized for a swarm of e-puck robots extended with the Overo Gum-
stick, the ground sensor, and the range-and-bearing board—see Figure 3.4 for a picture
of the platform. This platform is the same used in the experiments presented in Sec-
tion 3.4 and it was formally defined in Section 3.4.1 via the reference model RM1.
The reference model RM1 describes the set of sensors and actuators exposed to the
control software. For convenience of the reader, we provide a brief sketch of the
reference model RM1 here and we refer the reader to Section 3.4.1 for the details.

According to the reference model RM1, the control cycle has a period of 100 ms.
At each time step, the control software receives the readings through the variables
prox i, light i, gnd i, rm, and ∠bm that abstract respectively, proximity, light, ground
sensors, and the readings of the range-and-bearing board. Based on these variables,
the control software decides the command values vl and vr to be applied to the wheel
motors. We summarize all the variables of the reference model RM1 in Table 3.1.

4.1.2 Module set

In Vanilla, the set of modules comprises six constituent behaviors and six condi-
tions. Some of the modules have tunable parameters that are optimized by Vanil-

la. Vanilla selects, combines, and fine-tunes these modules to produce a finite
state machine. This finite state machine operates with a period of 100 ms, which is
the same period at which sensors and actuators are updated, as specified by the ref-
erence model RM1. At each control cycle, the constituent behavior associated with
the current state is performed. Subsequently, each outgoing transition of the current
state is considered and the corresponding condition is evaluated to decide whether
the transition is enabled or not. In case no transition is enabled, no state transition
occurs. If at least a transition is enabled, one of them is randomly selected and the
current state is updated accordingly.

In the following, we describe the modules of Vanilla. We adopt the convention
that tunable parameters are denoted by letters of the Greek alphabet.

Constituent behaviors

Exploration: the robot moves straight. If any of the proximity sensors positioned in
front senses an obstacle, that is, if prox i ≥ 0.1 for any i ∈ {1, 2, 7, 8}, the robot turns
on itself for a random number of control cycles chosen in {0, 1, . . . , τ}, where τ is
an integer parameter in {1, 2, . . . , 100}. The robot turns away from the direction
faced by the proximity sensor that returned the highest value.

4.1. PROOF OF CONCEPT: AUTOMODE-VANILLA 51

Stop: the robot stays still.

Phototaxis: the robot moves towards the light source, if perceived; otherwise, it
moves straight. Obstacle avoidance is embedded: the robot follows the vector
~w = ~w′ − k ~wo, where k is a hard-coded parameter whose value has been a priori
fixed to 5 and ~w′ and ~wo are vectors defined as:

~w′ =

~wl =
∑8

i=1 (light i, ∠qi) , if light is perceived,

(1, ∠0) , otherwise;

~wo =
8∑
i=1

(prox i, ∠qi) ,

(4.1)

where ∠qi is the angle at which sensor i is positioned with respect to the head of
the robot.

Anti-phototaxis: the robot moves away from the light source, if perceived; other-
wise, it moves straight. Obstacle avoidance is embedded: the robot follows the
vector ~w = ~w′ − k ~wo, where

~w′ =

−~wl, if light is perceived,

(1, ∠0) , otherwise;

and k, ~wl, and ~wo are defined in phototaxis.

Attraction: the robot uses the range-and-bearing board to go in the direction of the
robots in neighborhood, if any; otherwise, it moves straight. Obstacle avoidance
is embedded: the robot follows the vector ~w = ~w′ − k ~wo, where

~w′ =

~wr&b =
∑n

m=1

(
α
rm
, ∠bm

)
, if robots are perceived,

(1, ∠0) , otherwise;
(4.2)

and α is a real-valued parameter in [1, 5], and where ~wo and k are defined in pho-
totaxis.

Repulsion: the robot moves away from the other robots in its neighborhood, if any;
otherwise, it moves straight. Obstacle avoidance is embedded: the robot follows
the vector ~w = ~w′ − k ~wo, where

~w′ =

−~wr&b, if robots are perceived,

(1, ∠0) , otherwise;

52 CHAPTER 4. AUTOMODE-VANILLA

and ~wr&b is defined in attraction, while ~wo and k are defined in phototaxis.

Conditions

Black-floor: if gnd i = 0, for any i ∈ {1, 2, 3}, the transition is enabled with probabil-
ity β, where β is a parameter.

Gray-floor: same as black-floor but the prerequisite is that gnd i = 0.5, for any i ∈
{1, 2, 3}.

White-floor: same as black-floor but the prerequisite is that gnd i = 1, for any i ∈
{1, 2, 3}.

Neighbor-count: the transition is enabled with probability:

z(n) =
1

1 + eη(ξ−n)
, (4.3)

where n is the number of robots in the neighborhood, η ∈ [0, 20] is a real-valued
parameter and ξ ∈ {0, 1, . . . , 10} is an integer parameter. The transition is enabled
with probability 0.5 if n = ξ. The parameter η regulates the steepness of the func-
tion z(n) at n = ξ.

Inverted-neighbor-count: the transition is enabled with probability 1− z(n), where
z(n) is defined in Equation 4.3.

Fixed-probability: the transition is enabled with probability β, where β is a param-
eter.

4.1.3 Optimization process

Concerning the optimization algorithm, Vanilla adopts F-Race (Birattari et al.,
2002; Birattari, 2009), a racing algorithm originally developed for tuning metaheuris-
tics. F-Race is able to select the most promising parameter setting out of an initial
pool of candidates. F-race has been designed to handle stochasticity in the eval-
uation of candidates: in the case of swarm robotics, the performance of a control
software candidate is highly stochastic and the ability of F-race to handle stochastic-
ity appears to be appropriate in this context. Moreover, F-race is an extremely simple
algorithm and in the context of this chapter we wish to keep the focus on the control
architecture rather than on the optimization process.

Within the optimization process, control software candidates are evaluated via a
computer-based simulation performed using ARGoS (Pinciroli et al., 2012), a multi-
engine simulator of swarm robotics systems. In particular, we use ARGoS’ 2D dy-
namic physics engine to model the robots and the environment.

4.1. PROOF OF CONCEPT: AUTOMODE-VANILLA 53

Vanilla adopts the implementation of F-race provided by the irace package
(López-Ibáñez et al., 2011) for R (R Development Core Team, 2008). F-Race itera-
tively evaluates a set of control software candidates, all generated randomly at the
beginning of the optimization process, and discards the candidates that have a low
expected performance, until a stopping criterion is met.

At iteration i, the candidates that have not been discarded in the previous i − 1

iterations are evaluated on a test case. A test case is characterized by the specific
initial condition—e.g., the initial position of the robots in the arena. To evaluate a
control software candidate on a test case, F-Race performs a simulation run. After
all candidates are evaluated, F-Race discards those candidates whose expected per-
formance, as estimated on the i test cases considered so far, is statistically dominated
by at least another candidate. The surviving candidates enter iteration i+1. The pro-
cess stops either when a single candidate remains or when a predefined maximum
number of evaluations has been performed. The maximum number of evaluations
is the available design budget and is part of the specifications of an automatic design
problem. It measures the computational resources available to produce the desired
design.

In order to limit the representational power of the control software produced, we
limit the number of states and conditions included: Vanilla can generate proba-
bilistic finite state machines with up to 4 states, where each state can have up to 4
outgoing transitions. The candidates are generated at the beginning of the optimiza-
tion process using the built-in sampling procedure provided by the irace package.
This procedure samples the space defined as:〈

#S, Si, S
p
i , #Ni, Ni,ji , Ci,ji , C

p
i,ji

〉
i=1,2...,#S

ji=1,2,...,#Ni

(4.4)

where #S ∈ {1, 2 . . . , 4} is the number of states of the probabilistic finite state ma-
chine; Si ∈ {1, 2 . . . , 6} is the constituent behavior of state i;1 Spi are the parameters of
the constituent behavior Si, if any; #Ni ∈ {1, 2, . . . , 4} is the outdegree of state i, that
is, the number of transitions outgoing state i; ji is an index spanning the #Ni succes-
sors of state i; Ni,ji ∈ {1, 2, . . . ,#S} is the ji-th successor of state i; Ci,ji ∈ {1, 2, . . . , 6}
is the condition associated to the transition that connects state i to its ji-th successor
Ni,ji ; and Cp

i,ji
are the parameters of the condition Ci,ji , if any. Figure 4.1 provide

an illustrative example of a finite state machine sampled from the space defined in
Equation 4.4.

The cardinality of the initial set of candidates is one sixth of the available design
budget.

1State i = 1 is the initial state of the probabilistic finite state machine.

54 CHAPTER 4. AUTOMODE-VANILLA

S1

S1
p

C2,1

C2,1
p

C1,2

C1,2
p

S2

S2
p

C1,1

C1,1
p

S3

S3
p

C3,2

C3,2
p

C3,1

C3,1
p

#S = 3

#N1 = 2
N1,1 = S2

N1,2 = S3

#N2 = 1
N2,1 = S3

#N3 = 2
N3,1 = S2

N3,2 = S1

Figure 4.1: Example of a finite state machine generated by Vanilla. The notation adopted
is the one defined in Equation 4.4. The circles represent the states and the double circle
represents the initial state. The label Si indicates the constituent behavior of the state i. The
diamonds represent the transitions. The label Ci indicates the condition associated with the
transition i. The labels contained in the dashed squares indicate the parameter set of the
constituent behaviors or the transitions.

Vanilla implements the best practice commonly followed in automatic design
to obtain control software that has the highest chance to overcome the reality gap:
A simulated uniform noise of 5% is added on the proximity, ground and light sen-
sors and on the wheels actuator—as suggested by Jakobi et al. (1995). The noise of
the range-and-bearing board follows a model defined using empirical data—as sug-
gested by Miglino et al. (1995). Moreover, the initial position and orientation of the
robots at each iteration of the F-Race algorithm are randomly set by sampling from
a uniform distribution.

4.2 Experimental setup

To assess the capabilities of Vanilla, we conduct a series of experiments in which
Vanilla is used to automatically design the control software for robot swarms that
are intended to perform two different tasks: aggregation and foraging. We selected
these two tasks because they are common benchmarks in swarm robotics and it ap-
pears that they can be performed by a swarm of robots characterized by the refer-
ence model RM1. Regarding the aggregation task, the same task was performed in
Francesca et al. (2012) by a swarm of robots characterized by a reference model that
featured a subset of the capabilities of the reference model RM1. For this reason, we
assume that the task can be performed by a robot swarm adopting the considered

4.2. EXPERIMENTAL SETUP 55

reference model RM12. Regarding the foraging task, even though we do not have
prior studies that show a swarm of robots that performs it, we assume that it can
be performed by the considered robot swarm as it is similar to the aggregation task
considered in this study. In particular, the main difference between the foraging task
and the aggregation task is the presence of a light source in the foraging task. This
light source, that can be used by the robots to orientate themselves, is made avail-
able to the robots via the variables of the reference model lighti. For this reason, we
assume that also this task can be performed by a robot swarm adopting the reference
model RM1.

The experiments presented in this chapter adhere to a hands-off experimental
protocol: we do not allow any human intervention in the automatic design process.
The aim of the experiments is to assess the expected performance of Vanilla in
designing control software for a robot swarm.3 We run three sets of experiments that
differ in the design budget, that is, the total number of simulation runs that Vanilla
can use to design the control software. The three design budgets are: 10 000, 50 000,
and 200 000 simulation runs. For each design budget, we execute 20 independent
runs of Vanilla and we therefore obtain 20 instances of control software; we then
assess the performance of these instances on the robots by performing a single run
of each of them.4

The experimental protocol we adopt provides for a number of elements that re-
duce the intervention of the human experimenter during the evaluation of the con-
trol software produced by Vanilla: The control software obtained in simulation
is automatically cross-compiled by ARGoS and copied on the e-pucks without any
modification. The initial position and orientation of the robots is obtained by run-
ning the constituent behavior exploration—see Section 4.1—for a random number of
seconds in {1, 2, . . . , 20}. The performance of the robots is automatically computed
by a tracking system (Stranieri et al., 2013) on the basis of data gathered via a ceiling
camera.

2The reference model adopted in Francesca et al. (2012) does not include the variables rm and ∠bm.
3Because Vanilla is stochastic, reporting and discussing its expected performance appears to be the appro-

priate choice (Birattari and Dorigo, 2007).
4The reader might wonder why, in order to estimate the expected performance of Vanilla on each design

budget, we repeat the design process 20 times and we test the resulting design on the robots only once. Due
to time constraints, we have decided to run 20 robot experiments per design budget. Having fixed to 20 the
total number of robot experiments, one might be tempted to consider alternative protocols: repeat the design 20
times and evaluate each resulting design 1 time; repeat the design 10 times and evaluate each resulting design
2 times; repeat the design 5 times and evaluate each resulting design 4 times; or even performing the design
once and evaluate the result 20 times. Although all these protocols would produce an unbiased estimate of the
expected performance of Vanilla, the one implemented in this study is the one that minimizes the variance of
the estimate. A similar issue has been formally studied in the context of the assessment of stochastic optimization
algorithms (Birattari, 2004, 2009).

56 CHAPTER 4. AUTOMODE-VANILLA

Table 4.1: EvoStick—Partition of the available design budget.

budget evolutionary algorithm (iterations) post-evaluation (per individual)
10 000 8 000 (8) 2 000 (20)
50 000 40 000 (40) 10 000 (100)

200 000 150 000 (150) 50 000 (500)

With the aim of quantifying the effects of the reality gap, we perform a further
independent assessment in simulation of the instances of control software produced
by Vanilla. Also in simulation, each instance is assessed by performing a single
run.

4.2.1 A yardstick: EvoStick

To put Vanilla into perspective, we compare Vanilla to EvoStick. EvoStick is
the same method used in the experiments described in Section 3.4. In the following,
we provide a brief description of EvoStick and we refer the reader to Section 3.4.2
for details.

EvoStick is based on the reference model RM1 that is the same one adopted
by Vanilla. EvoStick is an implementation of the classical evolutionary swarm
robotics approach: an evolutionary algorithm optimizes the feed-forward neural
network that controls each robot. Inputs and outputs of the neural networks are de-
fined on the basis of the reference model RM1. In particular, the neural network has
24 inputs: 8 readings from the proximity sensors, 8 from the light sensors, 3 from
the ground sensors and 5 that are obtained by aggregating the range-and-bearing
readings. The outputs are the commands to the two wheel motors.

The neural network has 50 real-valued parameters that are optimized by an evo-
lutionary algorithm that features mutation and elitism. The evolutionary algorithm
operates on populations of 100 neural networks. At a given iteration, each neural
network is tested 10 times in simulation. The population to be tested at the subse-
quent iteration is created as follows: the 20 best performing neural networks (the
elite), are included unchanged; 80 further neural networks are generated from the
elite via mutation. Simulations are performed using ARGoS (Pinciroli et al., 2012).

The available design budget is partitioned in two parts: one for the evolutionary
algorithm and one for the post-evaluation. See Table 4.1 for the details.

EvoStick implements exactly the same precautions adopted in Vanilla to re-
duce the risk of obtaining control software that does not overcome the reality gap—
see Section 4.1.3. In the definition of EvoStick, we do not employ any further
technique to overcome the reality gap. The adoption of other techniques is not a pri-

4.2. EXPERIMENTAL SETUP 57

ori justified, and would possibly become apparent only a posteriori, when looking at
the results obtained on each specific task to be performed. If additional techniques
to overcome the reality gap are adopted on a per-task basis and a posteriori on the
base of the results obtained, the overall design process would end up into a human-
driven trial-and-error search and this would defeat the purpose of our experimental
protocol and of our research as a whole.

We assess the performance of EvoStick with the same criteria and under the
same experimental conditions that we adopt for the assessment of Vanilla. In
particular, the two methods use the same simulator, design control software for the
same robotic platform under the same reference model, and optimize the same ob-
jective function under the same environmental conditions. Concerning the robot
experiments, to limit spurious effects of battery level and of other possible unfore-
seen ambiental contingencies, the order of the experiments is randomly generated
and runs of instances of control software produced by Vanilla and by EvoStick

are interleaved.

4.2.2 Tasks

In all the experiments that we perform on the aggregation and the foraging tasks,
the swarm comprises 20 e-puck robots. The available time to complete the task is
250 s. The robots operate in a dodecagonal arena of 4.91 m2, surrounded by walls.
For future reference, we define a coordinate system with origin in the center of the
arena and x axis parallel to one of the sides. Coordinates in this system are given in
meters.

Aggregation

In the aggregation task, the swarm has to cluster in one of the two black areas of
the arena’s floor. The aggregation task is the same considered in the experiment
presented in Section 3.4.

Figure 4.2 shows the arena for the aggregation task in both simulation and reality.
The floor of the arena is gray and there are two black circular areas on the floor,
namely a and b. The areas have the same radius of 0.35 m and are centered in (0.6, 0)

and (−0.6, 0).
At the beginning of each run, the 20 e-puck robots are randomly distributed in

the arena. The objective function is Faggregation = max(Na, Nb)/N , where Na and Nb

are the number of robots that are in the black areas a or b at the end of the simulation,
and N = 20 is the size of the swarm. This objective function equals 1 if all the robots

58 CHAPTER 4. AUTOMODE-VANILLA

(a) Simulated arena and 20 e-pucks. (b) Real arena and 20 e-pucks.

Figure 4.2: Arena for the aggregation task.

are aggregated in one of the two areas.

Foraging

In the foraging task, the swarm has to retrieve as many objects as possible from two
sources and deposit them in the nest. Because the e-puck platform has no grasping
capabilities, we abstract the actions of retrieving and depositing objects: We reckon
that an e-puck has retrieved an object when it enters a source, which is represented
by a black circle on the ground. Similarly, we reckon that an e-puck has deposited the
object it is carrying when it enters the nest, which is represented by a white area. Our
foraging task is inspired by the one presented in Liu et al. (2007). Figure 4.3 shows
the arena for the foraging task in both simulation and reality. The two black areas
have a radius of 0.15 m and are centered in (0.75, 0) and (−0.75, 0). Moreover, a light
source is positioned behind the nest area, in (0, 1.25) at 0.75 m from the ground. The
objective function is Fforaging = No, where No is the total number of objects retrieved
and deposited.

4.3 Results

We analyze the results of the experiments from two points of view: first, we estimate
the performance of the control software produced by Vanilla, using the perfor-
mance of the one produced by EvoStick as a yardstick; second, we compare the

4.3. RESULTS 59

(a) Simulated arena and 20 e-pucks. (b) Real arena and 20 e-pucks.

Figure 4.3: Arena for the foraging task. The red circle at the bottom of the simulated arena
represents the light source.

performance of the control software produced by Vanilla in simulation and on the
robots to evaluate the impact of the reality gap. Also in this case, we use EvoStick
as a yardstick.

Moreover, for each task we provide a behavioral analysis of the swarms designed
by Vanilla and by EvoStick. In this analysis, we also highlight the main differ-
ences between the behaviors observed in simulation and those observed in reality.

The complete set of experimental data and video recordings of all the robot ex-
periments is available online (Francesca and Birattari, 2017).

4.3.1 Aggregation

Figure 4.4 shows the performance of Vanilla and of EvoStick in simulation and
on the robots.

In all three sets of experiments, Vanilla designs robot swarms that perform
better than those designed by EvoStick: for each design budget, the difference in
performance between Vanilla and EvoStick is statistically significant according
to the Wilcoxon test, with 95% confidence.

A visual inspection of the plots shows that Vanilla and EvoStick have sim-
ilar performance in simulation. For what concerns the reality gap, in the case of
EvoStick there is a large difference in performance between simulation and real-

60 CHAPTER 4. AUTOMODE-VANILLA

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

O
bj

ec
tiv

e
fu

nc
tio

n
Wide boxes: robots
Narrow boxes: simulation

Vanilla EvoStick

(a) 10 000 design budget.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

O
bj

ec
tiv

e
fu

nc
tio

n

Vanilla EvoStick

(b) 50 000 design budget.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

O
bj

ec
tiv

e
fu

nc
tio

n

Vanilla EvoStick

(c) 200 000 design budget.

Figure 4.4: Aggregation—Performance of the control software obtained using different de-
sign budgets. The plot shows, for Vanilla and EvoStick, the performance of the 20 in-
stances of the control software (one for each independent run) both in simulation (narrow
boxes) and on the robots (wide boxes). A box comprises observations between the first and
third quartile; the black horizontal line represents the median of the observations; the top
whisker extends either to the largest observation or to 3/2 of the upper quartile (whatever is
smaller); the bottom whisker is defined similarly; observations falling outside the extension
of whiskers (if any) are outliers and are represented as circles.

ity. The control software obtained by EvoStick, even though it yields good results
in simulation, is not able to reliably produce aggregation on the robots. On the con-
trary, in the case of Vanilla the difference between simulation and reality is small.
A statistical analysis based on the Wilcoxon test is reported in Table 4.2. The data
confirms that the mismatch between simulation and reality is lower in Vanilla

than in EvoStick. The difference between the mismatch observed for Vanilla
and for EvoStick is significant with a confidence level of at least 95%. The table
indicates that the performance difference between simulation and reality observed
in EvoStick increases with the design budget from 10 000 to 50 000, and then satu-
rates. These observations could be explained as a result of overfitting: the larger the
design budget, the longer the fine-tuning of the control software, and consequently
the larger the risk of overfitting, up to saturation.

In all 60 runs, across the three budget levels, Vanilla has used the whole avail-
able design budget. As a result, Vanilla and EvoStick have always run the same
number of simulated experiments.

4.3. RESULTS 61

Table 4.2: Aggregation—Estimated mismatch between simulation and reality, and corre-
sponding confidence intervals according to the Wilcoxon test.

estimated 95% confidence
budget mismatch interval
10 000 Vanilla 0.01 -0.06 0.08

EvoStick 0.19 0.07 0.30
50 000 Vanilla 0.03 -0.12 0.17

EvoStick 0.40 0.30 0.50
200 000 Vanilla 0.01 -0.11 0.12

EvoStick 0.40 0.30 0.50

attraction

α = 5

black-floor

β = 1
stop

fixed-probability

β = 0.25

gray-floor

β = 1

Figure 4.5: Aggregation—An instance of control software designed by Vanilla. The initial
state is represented by the double-line circle. The robot performs attraction and moves to-
ward the other robots. When it detects the black floor, it stops. In the stop state it checks for
its transitions. It changes state when it detects the gray floor. It also starts moving, with a
0.25 probability, independently from the floor color.

62 CHAPTER 4. AUTOMODE-VANILLA

Behavioral analysis

In this section, we describe the behavior of the control software designed by Vanil-
la and EvoStick for aggregation.

Vanilla. A feature of AutoMoDe is that the obtained control software is a prob-
abilistic state machine, which is human readable. The 60 instances of the control soft-
ware designed by Vanilla for the aggregation task have, with minor differences,
the same structure. Figure 4.5 shows a representative instance. Each robot starts in
the attraction state, that is, it moves toward other robots. With probability 1, a robot
changes state to stop when it senses that the floor is black. In the stop state, the robot
does not move. The robot then changes the state to attraction with a 0.25 probability
or when it perceives the gray floor. This last event can happen because the robot
is pushed outside the black area by other robots. The resulting collective behavior
can be described as follows: Initially, robots tend to move in the direction of their
neighbors and tend to cluster. Robots that enter a black area stop for some time and
act as an attraction point for their neighbors. After a while, all robots are either in a
black area or in its proximity. Eventually, most of the robots are attracted inside the
black area where the majority of the robots are located. The behaviors observed in
simulation and in reality are similar.

EvoStick. Because neural networks are not human readable, the only way to
analyze the control software obtained by EvoStick is to instantiate it on the robots
and observe the resulting behavior. The 60 instances of control software obtained
by EvoStick show behaviors that are qualitatively similar to one another. When a
robot is in the gray area, it moves following a circular trajectory. The radius of this
trajectory decreases when the number of robots perceived increases. This movement
allows the robots to create aggregates. When a robot enters a black area, the radius
of its trajectory becomes very small, to the point that the robot almost rotates on the
spot. In this condition, the robot leaves the black area only because pushed out by
other robots. The robots that are in the black areas attract other robots. From our
observations, it appears that the quality of the resulting collective behavior strongly
depends on where the first aggregates are created: if these aggregates are far from
the black areas, the robots are not able to find the black areas. In simulation, the
behavior is qualitatively similar but the circular trajectories have a larger radius with
respect to the ones observed in reality.

4.3. RESULTS 63

0
20

40
60

80
10

0
12

0

O
bj

ec
tiv

e
fu

nc
tio

n
Wide boxes: robots
Narrow boxes: simulation

Vanilla EvoStick

(a) 10 000 design budget.

0
20

40
60

80
10

0
12

0

O
bj

ec
tiv

e
fu

nc
tio

n

Vanilla EvoStick

(b) 50 000 design budget.

0
20

40
60

80
10

0
12

0

O
bj

ec
tiv

e
fu

nc
tio

n

Vanilla EvoStick

(c) 200 000 design budget.

Figure 4.6: Foraging—Performance of the control software obtained using different design
budgets. The plot shows, for Vanilla and EvoStick, the performance of the 20 instances
of the control software (one for each independent run) both in simulation (narrow boxes) and
on the robots (wide boxes). See the caption of Figure 4.4 for an explanation of the graphical
conventions adopted in the plot.

4.3.2 Foraging

Figure 4.6 shows the performance achieved on the foraging task by Vanilla and
by EvoStick, both in simulation and on the robots. The obtained results show the
same trend observed in the aggregation task.

In all three experiments, Vanilla designs robot swarms that perform better
than those designed by EvoStick. Differences are all significant according to the
Wilcoxon test, with 95% confidence.

Concerning the reality gap, it is interesting to note that EvoStick shows signs
of overfitting: the mismatch between simulation and reality is large and increases
with the design budget. On the contrary, Vanilla is able to design control software
that is robust to the reality gap. The statistical analysis reported in Table 4.3 confirms
these observations: In all the experiments, the difference between the mismatch ob-
served for Vanilla and for EvoStick is significant with a confidence level of at
least 95%. In the case of Vanilla, the simulation slightly underestimates the per-
formance of the robots. This is shown by the fact that the expected difference is
slightly negative. On the contrary, in the case of EvoStick the simulation greatly
overestimates the performance of the robots.

In all 60 runs, across the three budget levels, Vanilla has used the whole avail-
able design budget. As a result, Vanilla and EvoStick have always run the same
number of simulated experiments.

64 CHAPTER 4. AUTOMODE-VANILLA

Table 4.3: Foraging—Estimated mismatch between simulation and reality, and correspond-
ing confidence intervals according to the Wilcoxon test.

estimated 95% confidence
budget mismatch interval
10 000 Vanilla −3 −7 2

EvoStick 39 31 47

50 000 Vanilla −2 −6 3
EvoStick 57 51 64

200 000 Vanilla −1 −6 4
EvoStick 70 64 79

Behavioral analysis

In this section, we describe the behavior of the control software designed by Vanil-
la and EvoStick for foraging.

Vanilla. The 60 instances of the control software obtained by Vanilla can be
grouped into two classes. The instances in the first class feature only exploration.
See Figure 4.7a for an example. By performing exploration, the robots periodically
enter the black and the white areas incrementing the value of the objective function.
Instances of the first class of control software are frequent when the lowest design
budget is used (14 instances out of 20), while they are rare for the other design bud-
gets (3 and 0 instances in the case of design budget 50 000 and 200 000, respectively).
The instances of the second class feature an alternation between exploration and
phototaxis. See Figure 4.7b for an example. A robot uses exploration to search for
the black areas. When it finds a black area, it switches to phototaxis to return to the
white area. When it reaches the white area, it resumes exploration. The behaviors
observed in simulation and in reality are similar.

EvoStick. The 60 instances of the control software obtained by EvoStick show
qualitatively similar behaviors. Robots explore the arena following curved trajecto-
ries that are perturbed by the presence of other robots, the color of the floor and the
intensity of the light. As a result of the perturbations, robots follow the walls and
sometimes cross the arena passing on the black areas (the sources) and on the white
area (the nest). However, this behavior is strongly affected by interference among
robots: frequently, robots create aggregates that dissolve after a while. Concerning
the comparison between the simulation and reality, two are the main differences:
i) robots interfere less with each other in simulation than in reality; and ii) circular
trajectories have a larger radius in simulation than in reality.

4.4. DISCUSSION 65

exploration

τ = 4

(a) First class: an example.

exploration

τ = 27

black-floor
β = 0.45

phototaxis

white-floor
β = 0.75

(b) Second class: an example.

Figure 4.7: Foraging—The two classes of control software designed by Vanilla. The initial
state is indicated by a double-line circle.

4.4 Discussion

In the experiments reported in Section 4.3, Vanilla overcomes the reality gap better
than EvoStick. It should be noted that the two methods have been tested under the
same conditions: same simulator, environment, objective function, design budget,
robot platform, and reference model. The reality gap that Vanilla and EvoStick

had to overcome is therefore the same. Nonetheless, the mismatch between simu-
lation and reality that we observed is significantly higher for the control software
generated by EvoStick than for the one generated by Vanilla. Following hy-
pothesis hp1 that we presented in Chapter 3, we ascribe this difference to the dif-
ferent representational power of the control architecture adopted by Vanilla and
EvoStick. It is true that, besides the control architecture, Vanilla and EvoStick

also differ in the optimization algorithm adopted. Nonetheless, it is our contention
that the impact of the optimization algorithm is negligible in this context and that
the control architecture is the main responsible for the differences observed in our
experiments. To backup this contention, we performed some exploratory experi-
ments (Francesca and Birattari, 2017) in which we compare EvoStick with another
method, FnnStick, in which the control architecture is the same neural network

66 CHAPTER 4. AUTOMODE-VANILLA

adopted in EvoStick and the optimization process is the one adopted in Vanil-

la. The results of these exploratory experiments show that FnnStick performs
slightly worse than EvoStick, which excludes that the differences between the per-
formance of Vanilla and EvoStick can be explained by a superior performance of
the optimization process adopted in Vanilla. We can therefore conclude that our
experiments corroborate hypothesis hp1: the high representational power provided
by the fine-grained control architecture adopted in EvoStick is not properly ex-
ploited and results in solutions that do not properly generalize to the real world. On
the contrary, Vanilla, with its relatively low representational power, displays bet-
ter generalization capabilities. In terms of the bias-variance tradeoff (Geman et al.,
1992), Vanilla has a higher bias toward a relatively restricted class of behaviors—
specifically, those that can be obtained by assembling a four-state probabilistic finite
state machine starting from the six given constituent behaviors and the six given
conditions. As a result, Vanilla expectedly features a lower variance compared to
EvoStick. Eventually, this results in a superior ability to overcome the reality gap.

4.5 Summary

In this chapter, we presented the first assessment on AutoMoDe. This assessment
is performed on Vanilla, which is a proof-of-concept instance of AutoMoDe spe-
cialized for the specific reference model of the e-puck robot, RM1. We performed
an experimental analysis in which we used Vanilla to design control software for
two different swarm robotics tasks: aggregation and foraging. The experiments were
performed using a hands-off experimental protocol, that is, no human intervention
has been allowed in the automatic design process. The results show that Vanilla
is able to successfully design control software for both tasks. The control software
obtained by Vanilla overcomes the reality gap: the performance in simulation and
in reality is comparable.

We compared Vanilla with EvoStick, a design method that implements the
current best practices in evolutionary robotics. The results show that Vanilla per-
forms better than EvoStick on both aggregation and foraging.

The empirical assessment on Vanilla continues in Chapter 5 with two main
goal: i) the empirical characterization of the class of tasks for which Vanilla can
successfully design control software, and ii) the comparison of Vanilla with hu-
man designers.

The contribution of this study goes beyond the mere results achieved by Vanil-
la. In this study, we addressed some of the challenges described in Section 2.5: We

4.5. SUMMARY 67

provided a comparison of our novel design method Vanilla with another design
method, EvoStick. We adopted the reference model RM1 in order to insure that
the Vanilla and EvoStick access the same resources and information provided by
the adopted platform. The two design methods under analysis are precisely defined
and identified univocally by the names Vanilla and EvoStick. The empirical
assessment of the design methods is based on robot experiments.

68 CHAPTER 4. AUTOMODE-VANILLA

Chapter 5

From Vanilla to Chocolate

In this chapter, we continue our assessment of AutoMoDe with two empirical stud-
ies: Study A and Study B. In Study A, we compare Vanilla and EvoStick with
two human design methods: U-Human (i.e., unconstrained human) and C-Human

(i.e., constrained human). U-Human is a design method in which the human de-
signer implements the control software in the way (s)he deems appropriate, without
any kind of restriction. C-Human is a design method where the human designer im-
plements the control software by combining the modules of AutoMoDe-Vanilla.
The comparison is performed on five swarm robotics tasks that are different from
those on which Vanilla and EvoStick have been tested in Chapter 4. The results
show that, under the experimental conditions considered, Vanilla performs better
than EvoStick but it is not able to outperform human designers. The results indi-
cate that Vanilla’s weak element is the optimization algorithm employed to search
the space of candidate designs. To improve over Vanilla and with the final goal of
obtaining an automatic design method that performs better than human designers,
we introduce Chocolate, which differs from Vanilla only in the fact that it adopts
a more powerful optimization algorithm. In Study B, we perform an assessment of
Chocolate. The results show that, under the experimental conditions considered,
Chocolate outperforms both Vanilla and the human designers. Chocolate is
the first automatic design method for robot swarms that, at least under specific ex-
perimental conditions, is shown to outperform a human designer.

The rest of the chapter is organized as follows: In Section 5.1, we introduce the
two manual design methods U-Human and C-Human. In Section 5.2, we describe
Study A. In Section 5.3, we introduce AutoMoDe-Chocolate, that is empirically
assessed in Study B, described in Section 5.4. Finally, in Section 5.5, we conclude
with a summary of the chapter.

69

70 CHAPTER 5. FROM VANILLA TO CHOCOLATE

5.1 Two manual design methods for a swarm of e-pucks

In this section, we describe U-Human and C-Human, the two manual methods that
are compared with Vanilla and EvoStick in this chapter. U-Human and C-Human,
similarly to Vanilla and EvoStick, design control software for a swarm of e-puck
robots conforming to the reference model RM1 described in Section 3.4.1.

5.1.1 U-Human

U-Human is a manual design method in which a human designer implements the
control software in the way (s)he deems appropriate, without any kind of restriction
regarding the design to produce. The designer realizes a trial-and-error process:
the control software is iteratively improved and tested until the desired behavior
is obtained. Within this process, the designer assesses the quality of the control
software by computing the value of the objective function and by observing the re-
sulting behavior via the simulator’s visual interface. As in the case of Vanilla and
EvoStick, during the development of the control software, the designer is allowed
to perform tests in simulation using ARGoS, but is not allowed to perform tests with
the robots. In the implementation of the control software, the designer is free to
access all the resources (s)he deems appropriate including the internet and her/his
own previously developed code.

The control software is implemented as a C++ class that operates on the variables
defined in RM1. These variables are manipulated by the control software via an
API. The designer is provided with a complete programming and simulation envi-
ronment based on ARGoS. Moreover, the designer is provided with the description
of the task to be solved, a control software skeleton to be used as a starting point,
the task-specific objective function to be optimized, and all the scripts that initialize
ARGoS for the task at hand. The control software skeleton is an empty C++ class
that complies with the specification of a valid control software for ARGoS. In other
terms, the skeleton is a valid control software that compiles and runs correctly but
that leaves the robot motionless in its initial position. The designer is required to
fill in the skeleton with the appropriate logic for solving the given task. To reduce
the burden on the designer, the skeleton contains commented instructions to access
the variables of RM1 via the API. The task-specific objective function computes the
performance of the swarm within the simulation. It is implemented via loop func-
tions, which in ARGoS parlance are callback functions executed at each step of the
simulation (Pinciroli et al., 2012). The objective function is computed automatically
by the simulation environment in a way that is completely transparent to the de-

5.2. STUDY A: COMPARISON OF FOUR DESIGN METHODS FOR RM1 71

signer. To ease the assessment of the control software being implemented, a utility
script is provided. The script compiles the control software, starts ARGoS, generates
the simulated arena, runs and visualizes the simulation, and prints the value of the
objective function. The designer is allowed to use debugging tools including gdb1

and valgrind.2

5.1.2 C-Human

C-Human is a manual method in which the human designer is constrained to use
Vanilla’s control architecture and modules. In other words, the human designer
takes the role of Vanilla’s optimization algorithm and searches the same design
space searched by Vanilla. As in Vanilla, the human is constrained to create
finite state machines comprised of at most four states, each with at most four outgo-
ing transitions—see Section 4.1 for the details on the restrictions on the finite state
machines produced by Vanilla. As in U-Human, in C-Human the designer itera-
tively improves the control software in a trial-and-error process that comprises im-
plementation phases interleaved with testing via simulation. The only difference
between U-Human and C-Human is that in the case of C-Human, the designer imple-
ments the control software by combining the modules of Vanilla and setting their
parameters, rather than directly writing C++ source code. To allow the designer to
implement the control software in this fashion, a user interface is provided. The user
interface allows the designer to specify the probabilistic finite state machine using a
simple finite language. The user interface also graphically visualizes the probabilis-
tic finite state machine specified by the designer. An example of a statement in this
language is given in Figure 5.1, together with the graphical visualization produced
by the user interface. The user interface also starts ARGoS, generates the simulated
arena, runs and visualizes the simulation, and prints the value of the objective func-
tion.

5.2 Study A: comparison of four design methods for RM1

The goal of this study is to compare Vanilla, EvoStick, U-Human, and C-Human.

1https://www.gnu.org/software/gdb/
2http://valgrind.org/

72 CHAPTER 5. FROM VANILLA TO CHOCOLATE

--nstates 2
--s0 attraction --alpha0 5 --n0 1

--n0x0 1 --c0x0 black-floor --beta0x0 1
--s1 stop --n1 2

--n1x0 0 --c1x0 fixed-probability --beta1x0 0.25
--n1x1 0 --c1x1 gray-floor --beta1x1 1

(a) A finite state machine described by a statement in the language adopted by
C-Human. The probabilistic finite state machine comprises 2 states. State 0 is “at-
traction”, with parameter α= 5, and has outdegree 1: edge 0 is connected to state 1,
the condition for the transition is “black-floor”, with parameter β=1. State 1 is “stop”
and has outdegree 2: edge 0 is connected to state 0, the transition is activated with
fixed probability 0.25; edge 1 is connected to state 0, the condition for the transition is
“gray-floor”, with parameter β=1.

attraction
α = 5

black floor
β = 1

stop

fixed probability
β = 0.25

gray floor
β = 1

(b) The resulting probabilistic finite state machine.

Figure 5.1: Example of a probabilistic finite state machine specified in the simple finite
language adopted in C-Human (a) and its graphical visualization (b).

5.2.1 Experimental protocol

In both studies proposed in the chapter, a central role is played by five researchers,
hereinafter referred to as experts.3 The experts are PhD candidates with about two
years of experience in the domain of swarm robotics. They have previously worked
with the e-puck platform or with similar platforms. They are familiar with the AR-
GoS simulator and programming environment.4 Within the protocol, each expert
plays a threefold role: (i) define a task, (ii) solve a task via U-Human, and (iii) solve
a task via C-Human. The tasks solved by an expert via U-Human and C-Human are
different from each other and from the one proposed by the expert himself. Experts
are not allowed to exchange information throughout the duration of the empirical
study. The roles of each expert is summarized in Table 5.1.

3With the goal of establishing accountability and credit, the five experts are included among the authors of
Francesca et al. (2015), the paper on which the results shown in this chapter are published.

4We think that PhD candidates are ideal subjects for this study. Indeed, it is our understanding that a large
share of the robot swarms described in the domain literature have been programmed by PhD candidates. See
Francesca and Birattari (2017) for data extracted from the publication record of our research laboratory.

5.2. STUDY A: COMPARISON OF FOUR DESIGN METHODS FOR RM1 73

Table 5.1: Role of the experts, anonymously indicated here by the labels E1 to E5. For
each row, the column “task” gives the name of the task; the column “defined by” identifies
the expert that has defined the task; the columns “U-Human” and “C-Human” identify the
experts that have solved the task acting as U-Human and C-Human, respectively. The tasks
defined by the experts are described in Section 5.2.1.

task defined by U-Human C-Human
SCA – shelter with constrained access E1 E5 E4
LCN – largest covering network E2 E1 E5
CFA – coverage with forbidden areas E3 E2 E1
SPC – surface and perimeter coverage E4 E3 E2
AAC – aggregation with ambient cues E5 E4 E3

Definition of the tasks

In the definition of the tasks, the experts are kept unaware of the design methods in-
cluded in the empirical study, in order to avoid any influence in the experts’ choices
that could favor one method over the others. Experts are asked to define tasks that,
according to their judgment, could be performed by a swarm of 20 robots conform-
ing to RM1. The experts are given a set of constraints that the tasks must satisfy: The
time available to the robots for performing a task is T = 120 s. The robots operate
in a dodecagonal area of 4.91 m2 surrounded by walls. The floor of the arena is gray.
Up to three circular or rectangular patches may be present on the floor. The patches
may be either white or black. The diameter of the circular patches and the sides of
the rectangular patches cannot exceed 0.6 m. The environmental setup may include
a light source placed outside the south side of the arena. Up to 5 obstacles may be
present in the arena. Obstacles are wooden cuboids of size 0.05 m×0.05 m×L, where
L is in the range [0.05, 0.80] m.

As part of the task definition, the experts are asked to define the task-specific
performance measure that will be used to assess task execution. The performance
measure should be computable on the basis of the position and orientation of the
robots, evaluated every 100 ms.

The procedure through which an expert defines a task can be interpreted as a
sampling according to an unknown distribution defined over the space of tasks that
can be performed by a swarm of 20 robots conforming to RM1, and that satisfy the
given environmental constraints. The tasks that are relevant to our study can be
defined in terms of the sampling procedure: the higher the probability that a task is
sampled, the higher the relevance of the task.

74 CHAPTER 5. FROM VANILLA TO CHOCOLATE

Description of the tasks defined by the experts

The following are the tasks defined by the experts according to the procedure given
in Section 5.2.1. Overhead shots of the arenas are given in Figure 5.2. It should
be noted that the performance of the proposed tasks is measured by an objective
function to either maximize or minimize.

SCA – shelter with constrained access. The arena contains a rectangular white region
of 0.15 m × 0.6 m. This region is closed on three sides by obstacles: only the south
side is open for the robots to enter. In the arena, there are also two black circular
patches, positioned aside the white region. The two circular patches have the same
diameter of 0.6 m. The setup also includes a light source placed on the south side of
the arena. The task for the robots is to aggregate on the white region: the shelter. The
robots can use the light source and the black circular patches to orientate themselves.
The performance measure is defined in terms of an objective function to maximize:
FSCA =

∑T
t=1N(t), where N(t) is the number of robots in the shelter at time t and T

is the time available to the robots for performing the task.

LCN – largest covering network. The arena does not contain any obstacle, floor
patch or light source. The robots are required to create a connected network that
covers the largest area possible. Each robot covers a circular area of 0.35 m ra-
dius. Two robots are considered to be connected if their distance is less than 0.25 m.
The performance measure is defined in terms of an objective function to maximize:
FLCN = AC(T), where C(T) is the largest network of connected robots at the end T of
the time available for performing the task and AC(T) is the area covered by C(T).

CFA – coverage with forbidden areas. The arena contains three circular black regions,
each with a diameter of 0.6 m. The robots are required to cover the arena, avoiding
the forbidden areas denoted by the black floor. The performance measure is defined
in terms of an objective function to minimize: FCFA = E[d(T)], where E[d(T)] is the
expected distance, at the end T of the time available for performing the task, between
a generic point of the arena and the closest robot that is not in the forbidden area.
This objective function is measured in meters.

SPC – surface and perimeter coverage. The arena contains a circular black region
with a diameter of 0.6 m and a square white region with sides of 0.6 m. The robots
are required to aggregate on the perimeter of the black circle and to cover the area
of the white square. The performance measure is defined in terms of an objective
function to minimize: FSPC = E[da(T)]/ca + E[dp(T)]/cp, where E[da(T)] is the ex-
pected distance, at the end T of the time available for performing the task, between
a generic point in the square region and the closest robot that is in the square region,

5.2. STUDY A: COMPARISON OF FOUR DESIGN METHODS FOR RM1 75

SCA – shelter with constrained access LCN – largest covering network
robots must aggregate in the white region, the
shelter.

robots must create a connected network that
covers the largest area possible.

CFA – coverage with forbidden areas SPC – surface and perimeter coverage
robots must cover all the arena except the for-
bidden black regions.

robots must cover the area of the white
square and the perimeter of the black circle.

Figure 5.2: Overhead shots of the arenas
used for the five tasks defined by the ex-
perts. The pictures show also the 20 e-
puck robots.

AAC – aggregation with ambient cues
robots must aggregate on the black circle.

76 CHAPTER 5. FROM VANILLA TO CHOCOLATE

E[dp(T)] is the expected distance between a generic point on the circumference of
the circular region and the closest robot that intersects the circumference. ca = 0.08

and cb = 0.06 are scaling factors that correspond to the values of E[da] and E[dp],
respectively, under the ideal condition in which 9 robots are regularly and equally
spaced on the surface of the white square and 9 on the perimeter of the black circle.
See Francesca and Birattari (2017) for more details. If no robot is on the surface of
the square region and/or on the perimeter of the circular region, E[da(T)] and/or
E[dp(T)] are undefined and we thus assign an arbitrarily large value to FSPC . We
consider this a major failure.

AAC – aggregation with ambient cues. The arena contains two circular regions, one
black and one white, each with a diameter of 0.6 m. The black region is placed closer
to the light source, which is on the south side of the arena. The robots have to ag-
gregate on the black region and can use the light and the white region to orientate
themselves. The performance measure is defined in terms of an objective function
to maximize: FAAC =

∑T
t=1N(t), where N(t) is the number of robots on the black

region at time t.

Design methods under analysis and experimental setup

We compare Vanilla, EvoStick, U-Human, and C-Human. These four design
methods are tested under the same conditions:
• Same platform. All methods target the same robotic platform: the specific ver-

sion of the e-puck formally defined by RM1.
• Same simulator. All methods employ ARGoS as a simulation software to eval-

uate design candidates.
• Same performance measures. All methods base the evaluation of a design can-

didate on the same task-specific performance measures.
• Same resources. To design the control software, the four methods are given a

similar amount of time, with a slight advantage to human designers. U-Human
and C-Human are given four hours per task. Time starts when the human de-
signer receives the description of the task. Vanilla and EvoStick are given a
budget of 200 000 executions of ARGoS per task. Vanilla and EvoStick are
executed on a computer cluster that comprises 400 opteron6272 cores. Under
this setting, Vanilla and EvoStick are able to complete a design session in
approximately 2 hours and 20 minutes, wall-clock time.

It is important to notice that simulation plays a different role in automatic and man-
ual design. Vanilla and EvoStick utilize simulation only to compute the value of
the objective function. This value is then used by the optimization algorithm to steer

5.2. STUDY A: COMPARISON OF FOUR DESIGN METHODS FOR RM1 77

the search process. Beside the value of the objective function, no other piece of infor-
mation is retained from the simulation. A graphical visualization of the simulation
is not needed and therefore is not performed. When a graphical visualization is not
performed, ARGoS is much faster than real time. As a consequence, the main benefit
that Vanilla and EvoStick obtain from not requiring a graphical visualization is
the fact that the objective function can be computed in a relatively short amount of
time.

In contrast, human designers greatly benefit from observing the whole evolu-
tion of the simulation: the human designer observes the resulting behavior of the
swarm and gets insights on how to improve the control software. Arguably, for a
human designer visual observation is more informative than the value of the objec-
tive function. Both in U-Human and C-Human, the designer can choose to speed up
the visualization with respect to real time or even to disable visualization altogether.
By performing simulations with visualization (at some appropriate speed-up level),
the human designer trades simulation speed for useful information.

Assessment on a swarm of e-pucks

The control software produced by Vanilla, EvoStick, U-Human and C-Human

for each task is assessed via test runs with a swarm of 20 e-puck robots.
In this study we adopt a hands-off approach that reduces human intervention to

a bare minimum. The control software is directly cross-compiled by the ARGoS sim-
ulator and it is uploaded onto each e-puck of the swarm without any modification.
To reduce the risk that the negative effects of battery discharge and other environ-
mental contingencies affect one method more than another, the order of the test runs
is randomly generated so that runs with the control software produced by the four
design methods are interleaved. The initial position of the e-pucks is generated by
placing the e-pucks in known positions and letting them perform a random walk for
20 seconds. This effectively yields a randomized starting condition for each run.

To compute the task-dependent performance measure we use a tracking sys-
tem (Stranieri et al., 2013) that gathers data via a ceiling-mounted camera. The track-
ing system logs position and orientation of each e-puck every 100 ms.

Objective of the study and statistical tools

The objective of the study is to compare the four design methods. We wish to answer
two questions: (i) whether Vanilla performs better than EvoStick on the tasks
proposed by the experts; and (ii) whether Vanilla performs better than a human

78 CHAPTER 5. FROM VANILLA TO CHOCOLATE

designer, represented here by the U-Human and C-Human methods.

As discussed in Section 5.2.1, the selected tasks can be seen as a sample extracted
from a class of tasks. As such, these tasks allow one to draw conclusions that gener-
alize, in a statistical sense, to the class of tasks from which they have been sampled.
For this reason, we concentrate our attention on the aggregate performance of the
methods over the tasks considered. For the sake of completeness, we report also a
boxplot of the per-task performance and the results obtained in simulation by the
control software produced by the methods under analysis. Nonetheless, the focus of
our study remains the aggregate analysis.

For each task, we perform 40 independent runs: 10 for the control software gener-
ated by each of the four methods under analysis. We analyze the aggregated results
using the Friedman test (Conover, 1999), with the task as a blocking factor: the total
pool of results of the 200 runs = 10 runs ×4 methods ×5 tasks, are aggregated by
task and ranked independently from the design method.

As the Friedman test is a rank-based non-parametric test, it does not require scal-
ing the performance measure computed for each of the tasks nor formulating any
restrictive hypothesis on the underlying distribution of the different performance
measures. This test requires only to convert the objective functions of all tasks into
the objective functions of the equivalent minimization problems. Given the rank-
based nature of the Friedman test, this operation is trivial: it can be performed via
any function that inverts the rank order. Specifically, to obtain a minimization prob-
lem from a maximization one, we use as objective function the inverse of the orig-
inal one. We represent the result of the Friedman test in a graphical way: a plot
that shows the expected rank obtained by each design method, together with a 95%
confidence interval. If the confidence intervals of two methods do not overlap, the
difference between the expected rank of the two is statistically significant.

Concerning the per-task results of the four design methods, we show five notched
box-and-whisker boxplots: one for each task. A notched box-and-whisker boxplot
gives a visual representation of a sample. The horizontal thick line denotes the me-
dian. The lower and upper sides of the box are called upper and lower hinges and
represent the 25-th and 75-th percentile of the observations, respectively. The upper
whisker extends either up to the largest observation or up to 1.5 times the differ-
ence between upper hinge and median—whichever is smaller. The lower whisker
is defined analogously. Small circles represent outliers (if any), that is, observations
that fall beyond the whiskers. Notches extend to ±1.58 IQR/

√
n, where IQR is the

interquartile range and n = 10 is the number of observations. Notches indicate the
95% confidence interval on the position of the median. If the notches of two boxes

5.2. STUDY A: COMPARISON OF FOUR DESIGN METHODS FOR RM1 79

do not overlap, the observed difference between the respective medians is significant
(Chambers et al., 1983).

In the boxplots, we include also the results obtained in simulation in order to
appraise the impact of the reality gap on the four design methods. Results obtained
with robots are represented by wide boxes and those obtained in simulation by nar-
row boxes. As with the assessment performed with the e-puck robots, also in simu-
lation we perform 10 independent runs for the control software instance generated
by each of the four design methods under analysis.

5.2.2 Per-task results

We report in the following the results obtained by the methods under analysis on
each of the five tasks. The notched box-and-whisker boxplots are given in Figure 5.3.
In the boxplots, the arrows indicate whether the objective function is to maximize
or minimize. Videos of the test runs and the complete data are available as online
supplementary material (Francesca and Birattari, 2017).

SCA – shelter with constrained access. C-Human and Vanilla perform better than
U-Human and EvoStick. In particular, Vanilla performs significantly better than
EvoStick. EvoStick is unable to overcome the reality gap. This holds true also
for U-Human, but to a far minor extent. C-Human and Vanilla overcome the reality
gap satisfactorily.

LCN – largest covering network. C-Human and EvoStick perform better than other
methods and Vanilla performs significantly better than U-Human. Vanilla and
U-Human do not successfully overcome the reality gap.

CFA – coverage with forbidden areas. The performance of the four methods is com-
parable: differences are within a range of few centimeters, that is, less than half of
the e-puck’s diameter. Regarding the reality gap, all methods display differences be-
tween simulation and reality, but these differences are small in absolute terms—they
are all within few centimeters.

SPC – surface and perimeter coverage. EvoStick is visibly unable to overcome the
reality gap and performs significantly worse than the other methods. In the boxplot,
the four X indicate four runs that resulted in a major failure. Vanilla, U-Human,
and C-Human perform comparably well.

AAC – aggregation with ambient cues. Vanilla’s results are slightly better than
those of U-Human and C-Human, and significantly better than those of EvoStick.
The four methods differ in their ability to overcome the reality gap: EvoStick has

80 CHAPTER 5. FROM VANILLA TO CHOCOLATE

SCA – shelter with constrained access

0
40

00
80

00
12

00
0

th
e

hi
gh

er
, t

he
 b

et
te

r
Vanilla EvoStick U−Human C−Human

LCN – largest covering network

0.
5

1.
0

1.
5

2.
0

th
e

hi
gh

er
, t

he
 b

et
te

r

Vanilla EvoStick U−Human C−Human

CFA – coverage with forbidden areas

0.
20

0.
22

0.
24

0.
26

0.
28

th
e

lo
w

er
, t

he
 b

et
te

r

Vanilla EvoStick U−Human C−Human

SPC – surface and perimeter coverage
2

4
6

8
10

12

Vanilla EvoStick U−Human C−Human

th
e

lo
w

er
, t

he
 b

et
te

rx xxx

AAC – aggregation with ambient cues

0
50

00
10

00
0

15
00

0
20

00
0

th
e

hi
gh

er
, t

he
 b

et
te

r

Vanilla EvoStick U−Human C−Human

Figure 5.3: Study A—notched box-and-whisker boxplots of the results obtained by Vanil-
la, EvoStick, U-Human, and C-Human on the five tasks. In each boxplot, the vertical axis
reports the values of the task-specific performance measure. Wide boxes represent the results
obtained with the robots and narrow boxes of those obtained in simulation. See Section 5.2.1
for a guide on how to read notched box-and-whisker boxplots.

5.2. STUDY A: COMPARISON OF FOUR DESIGN METHODS FOR RM1 81

rank

C-Human
U-Human
EvoStick
Vanilla

15 20 25

the lower, the better

Figure 5.4: Study A—Friedman test on aggregate data from the five tasks. Vanilla
performs significantly better than EvoStick and U-Human, but significantly worse than
C-Human. See Section 5.2.1 for an explanation of how to read the plot.

the most severe difficulties, followed by U-Human; also Vanilla and C-Human dis-
play difficulties, but to a minor extent.

5.2.3 Aggregate analysis and discussion

The aggregate analysis is given in Figure 5.4: C-Human performs significantly better
than Vanilla, and both C-Human and Vanilla perform significantly better than
EvoStick and U-Human. The comparison between Vanilla and EvoStick con-
firms the results obtained in Chapter 4.

Concerning manual design, some interesting facts can be observed. The results
show that, at least under the specification–development–deployment life cycle, also
manual design suffers from the reality gap. It is interesting to notice that C-Human
appears to be more effective than U-Human at overcoming the reality gap. This con-
firms the reasoning based on the notion of bias-variance tradeoff (Geman et al., 1992)
that we presented in Chapter 3: the reality gap problem is an instance of a wider
problem related to generalization. Methods that are more constrained and therefore
have a reduced representational power also have a reduced variance. As a result,
they appear to have better generalization properties.

A second interesting fact is that, under the protocol adopted, human design-
ers produce more effective control software when constrained to use the few and
relatively simple predefined modules of Vanilla. This result was unexpected—
particularly by the experts themselves—and appears counter-intuitive. We were
convinced that human designers would have obtained the best results when left free
to structure the control software following their intuition and understanding. Also,
we expected that the constraint to limit the design activity to assembling 12 prede-
fined modules would have hindered their creativity and would have limited their
effectiveness. The results proved us wrong: C-Human clearly outperforms U-Human.
Apparently, the aforementioned reduction of the variance that is obtained by intro-

82 CHAPTER 5. FROM VANILLA TO CHOCOLATE

ducing constraints more than compensates for the disadvantages that derive from
the introduction of a bias.

Concerning the comparison between manual and automatic design, the results
show that Vanilla performs significantly better than U-Human but worse than
C-Human. This is a promising result but indicates that we have not attained our
goal yet: Vanilla cannot be claimed to be more effective than a human designer.

The results obtained by C-Human and Vanilla corroborate the hypothesis that
Vanilla’s set of modules are generally appropriate for tackling relevant tasks with
robots conforming to RM1. The results also highlight a major issue with Vanilla:
the optimization algorithm F-Race appears to be unable to fully exploit the potential
of the modules. This is clearly indicated by the fact that C-Human, which adopts the
same modules adopted by Vanilla, performs significantly better.

5.3 Chocolate

Chocolate is an improved version of Vanilla. As Vanilla, Chocolate designs
control software for RM1. Chocolate differs from Vanilla in a single aspect:
the optimization algorithm used to explore the design space. Chocolate adopts
Iterated F-Race (Balaprakash et al., 2007; Birattari et al., 2010; López-Ibáñez et al.,
2011), an algorithm for automatic configuration originally devised to fine-tune the
parameters of metaheuristics. Iterated F-Race is based on F-Race (Birattari et al.,
2002; Birattari, 2009), the optimization algorithm adopted in Vanilla.

In Iterated F-Race, the optimization process goes through a series of iterations
each of which is an execution of the F-Race algorithm. In the first iteration, an initial
set of candidate solutions is generated by sampling the space of feasible solutions
in a uniformly random way. The initial candidates undergo a first execution of the
F-Race algorithm. When the F-Race algorithm terminates, the surviving solutions—
that is, the candidate solutions that have not been discarded—are used as a seed to
generate a new set of candidate solutions on which the following iteration will oper-
ate. The new set of candidates is obtained by sampling the space of feasible solutions
according to a distribution that gives a higher probability of being selected to solu-
tions that are close to the surviving solutions. See López-Ibáñez et al. (2011) for the
details. The new set of candidates undergoes a further execution of the F-Race al-
gorithm. The process is iterated and stops when a predefined budget of evaluations
have been performed.

The implementation of Iterated F-Race that is adopted in Chocolate is the one
provided by the irace package (López-Ibáñez et al., 2011) for R (R Development Core

5.4. STUDY B: ASSESSMENT OF CHOCOLATE 83

Team, 2008). Chocolate uses the default parameters of irace and samples the design
space using the built-in sampling procedure of irace (López-Ibáñez et al., 2011).

Our working hypotheses are that, by adopting a more effective optimization al-
gorithm, (i) Chocolate improves over Vanilla and, most importantly, (ii) the
improvement is such that Chocolate outperforms C-Human.

5.4 Study B: assessment of Chocolate

The goal of this study is to empirically assess Chocolate and corroborate the work-
ing hypotheses formulated in Section 5.3.

5.4.1 Experimental protocol

The experimental protocol that we adopt to evaluate Chocolate shares its main fea-
tures with the one defined in Section 5.2.1. The only differences concern (i) the way
in which the tasks are defined/selected and (ii) the design methods under analysis.

Tasks and design methods under analysis

The study is performed on the five swarm robotics tasks considered in Section 5.2.
We do not perform again the procedure described in Section 5.2.1 but we directly
adopt the task defined by the experts for Study A and already described in Sec-
tion 5.2.1

We compare Chocolate, with Vanilla, and C-Human. We exclude EvoStick
and U-Human from this study because they were clearly outperformed by C-Human
and Vanilla in Study A. Concerning Vanilla and C-Human, we adopt the same
control software generated in Study A.

Chocolate, Vanilla, and C-Human share three key characteristics: (i) they
all produce robot control software in the form of a probabilistic finite state machine;
(ii) they operate on the same set of modules; and (iii) they all adopt the same simu-
lator to compare and select candidate designs.

The three design methods under analysis are tested under the same conditions
adopted in Study A: same platform, same simulator, same performance measures,
same resources. See Section 5.2.1 for the details.

Assessment on a swarm of e-pucks

As in Study A, the control software produced by the design methods are assessed
via test runs with a swarm of 20 e-puck robots.

84 CHAPTER 5. FROM VANILLA TO CHOCOLATE

Although in Section 5.2 we have already performed an assessment of the con-
trol software generated by Vanilla and C-Human on the five tasks considered, we
repeat the assessment here. This allows us to compare the three methods under
the exact same conditions. It would be indeed practically impossible to reproduce
the same conditions under which Study A was performed: robots, batteries, and
light sources have been subject to wear and their properties have possibly changed.
Moreover, we have updated the firmware of the e-pucks and the software we use to
manage the e-pucks and to track their position over time. Finally, the arena has been
disassembled and later reassembled in a different position.

We adopt here the same hands-off approach we adopted in Study A: the control
software is cross-compiled by ARGoS and it is uploaded onto each e-puck of the
swarm without any modification. Moreover, the order of the test runs is randomly
generated so that runs with the control software produced by the methods under
analysis are interleaved. The initial positions of the e-pucks are randomly generated
as in Study A. Also the performance measures are computed via the tracking system
as in Study A.

Objective of the study and statistical tools

The objective of the study is to compare the three design methods. In particular,
we wish to confirm our working hypotheses: (i) Chocolate improves over Va-
nilla; and, most of all, (ii) the improvement is such that Chocolate outperforms
C-Human. As in Study A, we are interested in the aggregate performance of the
methods over the five tasks. Therefore, the main statistical tool we use is the Fried-
man test. For completeness, we report also the per-task notched box-and-whisker
boxplots.

5.4.2 Per-task results

The results obtained by the three methods under analysis on each of the five tasks
are represented by the notched box-and-whisker boxplots reported in Figure 5.5.
Videos of the test runs and the complete data are available as online supplementary
material (Francesca and Birattari, 2017).

SCA – shelter with constrained access. The control software instance designed by
Chocolate performs better than the ones designed by Vanilla and C-Human.
The differences in performance between Chocolate and C-Human and between
Chocolate and Vanilla are significant. Moreover, C-Human performs signifi-
cantly better than Vanilla. Regarding the difference between simulation and real-

5.4. STUDY B: ASSESSMENT OF CHOCOLATE 85

SCA – shelter with constrained access

0
40

00
80

00

Vanilla Chocolate C−Human
th

e
hi

gh
er

, t
he

 b
et

te
r

LCN – largest covering network

0.
5

1.
0

1.
5

2.
0

Vanilla Chocolate C−Human

th
e

hi
gh

er
, t

he
 b

et
te

r

CFA – coverage with forbidden areas

0.
20

0.
24

0.
28

0.
32

Vanilla Chocolate C−Human

th
e

lo
w

er
, t

he
 b

et
te

r

SPC – surface and perimeter coverage
2

3
4

5
6

Vanilla Chocolate C−Human

th
e

lo
w

er
, t

he
 b

et
te

r

AAC – aggregation with ambient cues

50
00

10
00

0
15

00
0

20
00

0

Vanilla Chocolate C−Human

th
e

hi
gh

er
, t

he
 b

et
te

r

Figure 5.5: Study B—notched box-and-whisker boxplots of the results obtained by Vanilla,
Chocolate, and C-Human on the five tasks. In each boxplot, the vertical axis reports the
values of the task-specific performance measure. Wide boxes represent the results obtained
with the robots and narrow boxes of those obtained in simulation. See Section 5.2.1 for a
guide on how to read notched box-and-whisker boxplots.

86 CHAPTER 5. FROM VANILLA TO CHOCOLATE

ity, Chocolate and C-Human appear to overcome the reality gap successfully: they
have similar performance in simulation and in reality. On the contrary, Vanilla
shows a significant mismatch.

LCN – largest covering network. Chocolate and C-Human have qualitatively the
same performance. On the other hand, Vanilla performs significantly worse than
both Chocolate and C-Human. For what concerns the effects of the reality gap, all
three design methods present a rather noticeable difference between simulation and
reality. C-Human displays the smallest mismatch. The mismatch between the perfor-
mance in simulation and reality is possibly due to the fact that, to solve this task, the
e-pucks rely on their ability to measure the distance of the neighboring robots. The
measurement of the distance is obtained via the range-and-bearing board, which is
imprecise and highly dependent on uncontrolled factors such as battery levels and
light conditions.

CFA – coverage with forbidden areas. Chocolate and C-Human have similar per-
formance. Vanilla is slightly worse. Differences are small: medians are all within
a range of less than two centimeters. Regarding the reality gap, the three methods
present a similar difference between simulation and reality. The flattening of the re-
sults with small differences that have no practical implications is possibly due to the
imprecision of the distances measured via the range-and-bearing board.

SPC – surface and perimeter coverage. The median performance recorded for Choc-
olate is better than the one recorded for C-Human and Vanilla. The difference be-
tween Chocolate and Vanilla is significant. Concerning the difference between
the performance observed in simulation and on the robots, all three the methods
show some mismatch. Like in the case of SCA – shelter with constrained access, this
difference is possibly due to the fact that part of the task relies on the imprecise
estimation of the distance provided by the range-and-bearing board.

AAC – aggregation with ambient cues. Both Chocolate and Vanilla perform sig-
nificantly better than C-Human. The median recorded for Chocolate is slightly
better than the one recorded for Vanilla. Concerning the difference between the
performance observed in simulation and on the robots, Vanilla shows a smaller
difference with respect to Chocolate and C-Human.

5.4.3 Aggregate analysis and discussion

The results of the aggregate analysis are reported in Figure 5.6. These results confirm
those presented in Section 5.2: C-Human outperforms Vanilla. The better perfor-
mance of C-Human over Vanilla corroborates the hypothesis formulated in Sec-

5.4. STUDY B: ASSESSMENT OF CHOCOLATE 87

rank

Chocolate

C-Human

Vanilla

the lower, the better

20 30 40

Figure 5.6: Study B—Friedman test on aggregate data from the five tasks. Chocolate per-
forms significantly better than both Vanilla and C-Human. See Section 5.2.1 for an expla-
nation of how to read the plot.

tion 5.2.3: as C-Human and Vanilla design control software combining the same
modules, the failure of Vanilla to match C-Human’s performance is to be ascribed
to Vanilla’s optimization algorithm. The hypothesis is confirmed by the fact that
Chocolate, which adopts a more advanced optimization algorithm, outperforms
Vanilla. This improvement of Chocolate is such that, under the experimen-
tal conditions considered in the study, Chocolate outperforms also C-Human. In
other words, under the experimental conditions defined by the protocol presented
in Section 5.4.1, Chocolate produces better control software than the one produced
by a human designer that operates on the same set of modules as Chocolate.

The results presented in Section 5.2 show that C-Human outperforms U-Human,
that is, the human designer that produces control software without any restriction
on the structure of the control software. Together, the results presented in Section 5.2
and those presented here lead to a stronger statement: under the experimental con-
ditions defined in Section 5.2.1 and Section 5.4.1, Chocolate designs control soft-
ware that outperforms the one produced by a human designer, whether the human
is constrained to use Chocolate’s (and Vanilla’s) modules or not.

Generality and limitations

An interesting question that naturally arises concerns the generality of the automatic
design methods discussed in the chapter. The question should be addressed at two
different levels: (i) the generality of Vanilla and Chocolate, as specializations
of AutoMoDe to a given reference model; and (ii) the generality of AutoMoDe as
an approach. In Chapter 3, we have already conceptually framed the notion of spe-
cialization of AutoMoDe and the generality of a specialization. In the following,
we focus on original remarks that can be made on the basis of the results presented
in this chapter. Regarding the generality of Vanilla and Chocolate, the results
presented in this chapter corroborate the hypothesis that underlies the definition

88 CHAPTER 5. FROM VANILLA TO CHOCOLATE

of Vanilla: the modules originally proposed for Vanilla and then adopted by
Chocolate and C-Human are sufficiently general to produce control software for
tasks that can be accomplished by a swarm of robots conforming to RM1. The hy-
pothesis is corroborated by the results because of the way in which the tasks have
been defined: as already noted, they can be considered as sampled according to an
unknown distribution defined over the space of tasks that can be accomplished by
a swarm of robots conforming to RM1. Regarding AutoMoDe, statements on the
general applicability of the approach can be made only by specializing AutoMoDe
to a large number of different reference models (of the same or different robots) and
then assessing these specializations on multiple tasks via studies similar to those
presented in this chapter. This is clearly a research program that requires a large
amount of empirical work and that goes far beyond the possibilities of this thesis.

A similar reasoning applies to the adoption of Iterated F-Race within AutoMoDe.
As the results obtained by Iterated F-Race in Chocolate are fully satisfactory, Iter-
ated F-Race will likely be the first optimization algorithm that we will consider in the
specialization of AutoMoDe for new reference models. Nonetheless, it is perfectly
possible that a new reference model (and therefore a new set of modules) requires
adopting another optimization algorithm. It should be noted that the optimization
algorithm to be used is not part of the definition of AutoMoDe, but rather of its spe-
cializations. Whether Iterated F-Race scales satisfactorily with the number of mod-
ules and whether some characteristics of the modules create particular problems to
Iterated F-Race is an empirical question that can be addressed only by specializing
AutoMoDe to a large number of reference models that require an increasingly larger
set of modules. Also in this case, this research program is clearly beyond the possi-
bility of this thesis.

A limitation of the studies presented in the chapter is related to the size and the
composition of the group of experts. Five researchers, all affiliated with the same
research group, cannot be considered as a sufficiently large and representative sam-
ple of the entire population of swarm robotics experts. As a consequence, the re-
sults presented in this chapter do not generalize to the entire population of swarm
robotics experts. These results show only that Chocolate was able, under the spe-
cific experimental conditions considered in this chapter, to outperform a group of
qualified domain experts, although these experts are not representative of the whole
population. Nonetheless, this chapter presents the first empirical study in which
an automatic method for the design of control software for robot swarms has been
shown to outperform human designers under controlled experimental conditions.

5.5. SUMMARY 89

5.5 Summary

In this chapter, we presented two empirical studies on the design of control soft-
ware for robot swarms in which automatic and manual methods are compared. In
Study A, we compared two automatic methods—Vanilla and EvoStick—with
two manual methods—U-Human and C-Human. Vanilla produces control soft-
ware by assembling preexisting modules into a finite state machine. EvoStick is
a rather standard evolutionary robotics method. The two automatic methods have
been already used in Chapter 4 and have been applied in this chapter without any
modification whatsoever. We performed the comparison on five new tasks, differ-
ent from those on which Vanilla and EvoStick had been previously tested. The
tasks have been defined by human experts that, at the time of the definition of the
tasks, were unaware of the functioning of Vanilla and EvoStick. The results
show that Vanilla produces better control software than EvoStick, which con-
firms the results previously obtained on other tasks. Moreover, the results show that
Vanilla outperforms U-Human but is outperformed by C-Human. As C-Human is a
method in which a human manually synthesizes finite state machines by assembling
the same modules on which Vanilla operates, we conclude that the difference in
performance between Vanilla and C-Human has to be ascribed to shortcomings in
Vanilla’s optimization algorithm.

To confirm our hypothesis, we defined a new automatic design method, Choc-
olate, that differs from Vanilla only in the optimization algorithm adopted. We
assessed Chocolate in Study B: our results show that, under the specific experi-
mental conditions considered in the study, Chocolate outperforms both Vanilla

and C-Human. Chocolate is the first automatic design method for robot swarms
that is shown to outperform a human designer, albeit under specific experimental
conditions.

The contribution of this chapter goes beyond the mere results achieved by Choc-
olate. We make another important contribution to the literature on the automatic
design methods for robot swarms by addressing the challenges described in Sec-
tion 2.5: A notable trait of the empirical studies presented in the chapter is the fact
that all the design methods under analysis adopt the same reference model RM1.
As stated in Section 2.5, the definition of a reference model of the robotic platform at
hand is a fundamental and necessary step to enable the fair and meaningful compar-
ison of multiple design methods, whether manual or automatic. The design methods
Chocolate, U-Human, and C-Human are precisely defined and univocally identi-
fied by their names. We proposed and demonstrated an experimental protocol to

90 CHAPTER 5. FROM VANILLA TO CHOCOLATE

compare automatic and manual design methods. The protocol has been developed
for use with up to four methods and five experts. Nonetheless, the protocol can be
straightforwardly extended to a larger number of methods and experts. This proto-
col includes a procedure to create benchmark tasks that ensures that the tasks are not
generated to favor a particular design method. In particular, according to the proto-
col, the roles of defining the benchmark tasks and the automatic design methods are
rigidly separated. The benchmark tasks are defined by researchers that are unaware
of the design methods under analysis. Eventually, the empirical assessment of the
design methods is based on robot experiments.

Chapter 6

Conclusions

This thesis gives a contribution to the automatic design of robot swarms.

A robot swarm is a highly redundant system that acts in a self-organized way
without the need of any form of centralized coordination. The main challenge in
swarm robotics is designing the individual behavior of the robots so that a desired
collective behavior is obtained. Typically, the designer adopts a trial-and-error ap-
proach. Automatic methods are a promising alternative to the trial-and-error ap-
proach. In automatic methods, the design problem is cast into an optimization prob-
lem that can be tackled using an optimization algorithm. Evolutionary robotics, the
most common automatic approach, has been successfully applied to design swarms
that perform many tasks. However, despite many successes, evolutionary robotics
presents some known limitations. In particular, we reckon the difficulty in over-
coming the reality gap. Our intuition is that this difficulty is due to an excessive
representational power of the control architecture typically adopted in evolutionary
robotics, that is, neural networks. This intuition is the starting point of the thesis.

In this thesis, with the aim of conceiving an effective automatic design approach,
we presented a conceptual framework in which the reality gap problem is described
and analyzed from a machine learning perspective. It is our contention that the re-
ality gap bears a strong resemblance to the generalization problem experienced in
supervised machine learning. Following this parallel with machine learning, we
analyze the reality gap using the bias-variance tradeoff. In machine learning, a con-
sequence of the bias-variance tradeoff is that a correlation exists between the gener-
alization capabilities of an approximator and its complexity (or the amount of com-
putational effort devoted to its training). By transposing the bias-variance tradeoff in
the context of the design of robot swarms, we defined two hypotheses that we used
to understand the reality gap and its implications. Hypothesis hp1: past an optimal
level, increasing the complexity of the control architecture (i.e., its representational

91

92 CHAPTER 6. CONCLUSIONS

power) is counterproductive. Hypothesis hp2: past an optimal level, increasing the
design effort is counterproductive. In both cases, past an optimal level of the repre-
sentational power or of the design effort, which is unknown a priori, the performance
in simulation increases while the performance in reality decreases. Both hypotheses
hp1 and hp2 have been corroborated in this thesis.

We corroborated hypothesis hp1 by introducing and evaluating AutoMoDe, a
novel automatic design approach that adopts a control architecture that has low rep-
resentational power. We presented two specializations of AutoMoDe for the e-puck
robot called Vanilla and Chocolate and we compared them with an automatic
design method based on evolutionary robotics called EvoStick. The results show
that Vanilla and Chocolate overcome the reality gap better than EvoStick.

We corroborated hypothesis hp2 with an experiment in which we compare the
performance of swarms obtained by EvoStick using increasing design budgets.
The results show that, past an optimal level, the performance in simulation and
reality diverge.

The results presented in this thesis show the validity of the intuition that the real-
ity gap bears a strong resemblance with the generalization problem faced in machine
learning. Moreover, we showed that the reality gap problem can be tackled using the
same tools that are used to tackle the generalization problem in machine learning:
both the reduction of representational power and early stopping can be beneficial.

We compared the two specializations of AutoMoDe, Vanilla and Chocolate

with two manual design methods and U-Human (i.e., unconstrained human) and
C-Human (i.e., constrained human). The results show that while Vanilla outper-
forms only U-Human, Chocolate outperforms U-Human and C-Human: for the
first time in the literature, an automatic design method, AutoMoDe-Chocolate,
has been shown to design robot swarms that perform better than the ones designed
by human designers.

Notwithstanding the results achieved in this thesis, it is our opinion that our find-
ings are far from being conclusive and many scientific questions regarding hypothe-
ses hp1 and hp2 remain open for further research. Regarding hypothesis hp1, the
fact that AutoMoDe, which adopts a control architecture with low representational
power, overcomes the reality gap better than EvoStick corroborates hp1. How-
ever, this does not imply that reducing the representational power is always benefi-
cial. Testing the boundaries of hypothesis hp1 by extensively analyzing a larger pool
of automatic design methods featuring different degrees of representational power
constitutes an interesting future research direction. Regarding hypothesis hp2, we
showed in a proof-of-concept experiment that an early stopping mechanism could

93

be beneficial. However, this does not imply that early stopping is always beneficial.
As for hypothesis hp1, an extensive analysis involving a wide pool of automatic
design methods and a wide pool of tasks is an interesting future research direction.

Regarding the empirical assessment of AutoMoDe, many questions still remain
open. For instance, in the thesis we showed that Vanilla and Chocolate are able
to design swarms of e-pucks that perform different tasks. Such tasks belong, de facto,
to the class of the tasks than can be performed by a swarm of e-pucks that conform
to the reference model RM1. In this regards, whether Vanilla and Chocolate are
able to design swarm of e-pucks for any of the tasks that belong to this class is an
open question that requires further investigation. Similarly, further investigation is
required to assess the validity of AutoMoDe as a general automatic design approach.
An empirical assessment performed on robot swarms conforming to the reference
model RM1 is not sufficient to evaluate AutoMoDe as a general design approach.
For this reason, further investigation is needed. This investigation could consider,
for instance, more complex reference models. In our opinion, reference models that
include communication abilities are an interesting and challenging testbed.

The contribution of this thesis goes beyond the results obtained by AutoMoDe. In
this thesis, we provide a review of the literature with a particular focus on how the
automatic design methods are assessed. This review shows that the literature on the
automatic design of control software for robot swarms appears to be scattered and
composed by isolated contributions: with few exceptions, no comparison between
design methods are provided and new ideas and methods are not properly assessed
against a well-established state of the art. It is our contention that the lack of an
empirical practice hinders the progress of the domain.

We highlighted four main challenges that we think need to be addressed to es-
tablish a proper empirical practice in the domain of the automatic design of robot
swarms: (i) Every study that proposes or applies an automatic design method
should clearly define a reference model for the robotic platform considered. (ii) Ev-
ery automatic design method should be precisely defined in all its parts and param-
eters, and univocally identified by a name. (iii) Libraries of standard benchmarks
should be defined and adopted by the community for assessing newly proposed
methods and ideas. (iv) Robot experiments should be the ultimate way to assess
methods for the automatic design of control software for robot swarms and should
be an essential element of any research study in the domain.

In this thesis, we attempted to address these four challenges: (i) We defined
the reference model RM1 for the e-puck robot. (ii) We precisely defined the design
methods adopted in the experiments and we gave them univocal names: Vanil-

94 CHAPTER 6. CONCLUSIONS

la, Chocolate, EvoStick, U-Human, and C-Human. Moreover, we released an
implementation of Vanilla, Chocolate, and EvoStick. (iii) We implemented
a procedure for creating benchmark task. (iv) We performed empirical analyses in
which experiments with the robots play a prominent role.

This is a first attempt to define an empirical practice suitable for the comparison
of methods in the domain of the automatic design of robot swarms. We believe
that the definition of an empirical practice is critical for the domain. In particular,
we are convinced that a solid, well-established, and consistently applied empirical
practice would allow the community to promote the best ideas proposed so far, to
focus on promising directions, and to attract further researches and investments to
the domain of the automatic design of control software for robot swarms.

Bibliography

Ackerman, E. (2012). Warehouse robots get smarter with ant intelligence. Available
on IEEE Spectrum at https://goo.gl/P4F4QV (shortened URL). Accessed Jan-
uary, 2016.

Babaoglu, O., Canright, G., Deutsch, A., Di Caro, G. A., Ducatelle, F., Gambardella,
L. M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., and Urnes, T.
(2006). Design patterns from biology for distributed computing. ACM Transactions
on Autonomous and Adaptive Systems, 1(1):26–66.

Bachrach, J., Beal, J., and McLurkin, J. (2010). Composable continuous-space pro-
grams for robotic swarms. Neural Computing and Applications, 19(6):825–847.

Balaprakash, P., Birattari, M., and Stützle, T. (2007). Improvement strategies for the
F-Race algorithm: Sampling design and iterative refinement. In Bartz-Beielstein,
T., Blesa Aguilera, M. J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., and Sampels,
M., editors, Hybrid Metaheuristics, HM 2007, volume 4771 of LNCS, pages 108–122.
Springer, Berlin, Germany.

Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., and Nolfi, S. (2007).
Self-organised coordinated motion in groups of physically connected robots. IEEE
Transactions on Systems, Man and Cybernetics - Part B, 37(1):224–239.

Basile, F., Chiacchio, P., Coppola, J., and Gerbasio, D. (2015). Automated warehouse
systems: A cyber-physical system perspective. In 2015 IEEE 20th Conference on
Emerging Technologies Factory Automation (ETFA), pages 1–4.

Bauer, F., Pereverzev, S., and Rosasco, L. (2007). On regularization algorithms in
learning theory. Journal of Complexity, 23:52–72.

Bayindir, L. and Şahin, E. (2007). A review of studies in swarm robotics. Turkish
Journal of Electrical Engineering and Computer Sciences, 15(2):115–147.

95

https://goo.gl/P4F4QV

96 BIBLIOGRAPHY

Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., and Winner, H. (2014).
Three decades of driver assistance systems: Review and future perspectives. IEEE
Intelligent Transportation Systems Magazine, 6(4):6–22.

Beni, G. (2005). From swarm intelligence to swarm robotics. In Şahin, E. and Spears,
W. M., editors, Swarm Robotics, volume 3342 of LNCS, pages 1–9. Springer, Berlin,
Germany.

Berman, S., Kumar, V., and Nagpal, R. (2011). Design of control policies for spa-
tially inhomogeneous robot swarms with application to commercial pollination.
In IEEE International Conference on Robotics and Automation (ICRA), pages 378–385,
Piscataway, NJ. IEEE Press.

Bianco, R. and Nolfi, S. (2004). Toward open-ended evolutionary robotics: evolv-
ing elementary robotic units able to self-assemble and self-reproduce. Connection
Science, 16(4):227–248.

Birattari, M. (2004). On the estimation of the expected performance of a metaheuris-
tic on a class of instances. How many instances, how many runs? Technical Report
TR/IRIDIA/2004-001, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

Birattari, M. (2009). Tuning Metaheuristics: A Machine Learning Perspective. Springer,
Berlin, Germany.

Birattari, M., Delhaisse, B., Francesca, G., and Kerdoncuff, Y. (2016). Observing the
effects of overdesign in the automatic design of control software for robot swarms.
In Dorigo, M., Birattari, M., Li, X., López-Ibáñez, M., Ohkura, K., Pinciroli, C., and
Stützle, T., editors, Swarm Intelligence, ANTS 2016, volume 9882 of LNCS, pages
149–160. Springer, Berlin, Germany.

Birattari, M. and Dorigo, M. (2007). How to assess and report the performance of a
stochastic algorithm on a benchmark problem: Mean or best result on a number
of runs? Optimization Letters, 1(3):309–311.

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A racing algorithm
for configuring metaheuristics. In Langdon, W. B. et al., editors, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), pages 11–18. Morgan
Kaufmann, San Francisco, CA.

Birattari, M., Yuan, Z., Balaprakash, P., and Stützle, T. (2010). F-Race and Iterated
F-Race: An overview. In Bartz-Beielstein, T., Chiarandini, M., Paquete, L., and

BIBLIOGRAPHY 97

Preuss, M., editors, Experimental Methods for the Analysis of Optimization Algorithms,
pages 311–336. Springer, Berlin, Germany.

Bongard, J., Zykov, V., and Lipson, H. (2006). Resilient machines through continuous
self-modeling. Science, 314(5802):1118–1121.

Bongard, J. C. (2013). Evolutionary robotics. Communications of the ACM, 56(8):74–83.

Brambilla, M. (2014). Formal methods for the design and analysis of robot swarms. PhD
thesis, Université Libre de Bruxelles, Brussels, Belgium.

Brambilla, M., Brutschy, A., Dorigo, M., and Birattari, M. (2015). Property-driven
design for swarm robotics: A design method based on prescriptive modeling and
model checking. ACM Transactions on Autonomous and Adaptive Systems, 9(4):17.1–
28.

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics: A
review from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41.

Brambilla, M., Pinciroli, C., Birattari, M., and Dorigo, M. (2012). Property-driven
design for swarm robotics. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 139–146, Richland, SC.
IFAAMAS.

Bredeche, N., Montanier, J.-M., Liu, W., and Winfield, A. F. (2012). Environment-
driven distributed evolutionary adaptation in a population of autonomous robotic
agents. Mathematical and Computer Modelling of Dynamical Systems, 18(1):101–129.

Brettel, M., Friederichsen, N., Keller, M., and Rosenberg, M. (2014). How virtualiza-
tion, decentralization and network building change the manufacturing landscape:
an industry 4.0 perspective. International Journal of Mechanical, Aerospace, Industrial,
Mechatronic and Manufacturing Engineering, 8(1):37 – 44.

Brooks, R. (1990). Elephants don’t play chess. Robotics and autonomous systems, 6(1-
2):3–15.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, 2(1):14–23.

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1–
3):139–159.

98 BIBLIOGRAPHY

Brooks, R. A. (1992). Artificial life and real robots. In Varela, F. J. and Bourgine, P.,
editors, Toward a Practice of Autonomous Systems. Proceedings of the First European
Conference on Artificial Life (ALIFE), pages 3–10. MIT Press, Cambridge, MA.

Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M., and Bi-
rattari, M. (2015). The TAM: abstracting complex tasks in swarm robotics research.
Swarm Intelligence, 9(1):1–22.

Capi, G. (2007). Multiobjective evolution of neural controllers and task complexity.
IEEE Transactions on Robotics, 23(6):1225–1234.

Caruana, R., Lawrence, S., and Giles, L. (2001). Overfitting in neural nets: backprop-
agation, conjugate gradient, and early stopping. In Leen, T., Dietterich, T., and
Tresp, V., editors, Advances in Neural Information Processing Systems 13, NIPS 2000,
pages 402–408. MIT Press.

Casan, G. A., Cervera, E., Moughlbay, A. A., Alemany, J., and Martinet, P. (2015).
ROS-based online robot programming for remote education and training. In IEEE
International Conference on Robotics and Automation (ICRA), pages 6101–6106, Pis-
cataway NJ, USA. IEEE.

Casini, M., Garulli, A., Giannitrapani, A., and Vicino, A. (2014). A remote lab for
experiments with a team of mobile robots. Sensors, 14(9):16486–16507.

Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983). Graphical
Methods for Data Analysis. Wadsworth & Brooks/Cole, Pacific Grove, CA.

Chobotix (2008). Chemical robots. Available at http://www.chobotix.cz.

Chouard, T. and Venema, L. (2015). Machine intelligence. Nature, 521(7553):435–435.

Christensen, A. L. and Dorigo, M. (2006). Evolving an integrated phototaxis and
hole-avoidance behavior for a swarm-bot. In Artificial Life (ALIFE), pages 248–254,
Cambridge, MA. MIT Press.

Christensen, A. L., Duarte, M., Costa, V., Rodrigues, T., Gomes, J., Silva, F., and
Oliveira, S. (2016). A sea of robots. AAAI Video Competition, https://youtu.
be/JBrkszUnms8. Best Robot Video.

Christensen, A. L., Oliveira, S. M., Postolache, O., de Oliveira, M. J., Sargento, S.,
Santana, P., Nunes, L., Velez, F., Sebastiao, P., Costa, V., Duarte, M., Gomes, J., Ro-
drigues, T., and Silva, F. (2015). Design of communication and control for swarms
of aquatic surface drones. In Proceedings of the International Conference on Agents and
Artificial Intelligence (ICAART), pages 548–555. SCITEPRESS, Setúbal, Portugal.

http://www.chobotix.cz
https://youtu.be/JBrkszUnms8
https://youtu.be/JBrkszUnms8

BIBLIOGRAPHY 99

Clark, R. J., Arkin, R. C., and Ram, A. (1992). Learning momentum: online per-
formance enhancement for reactive systems. In IEEE International Conference on
Robotics and Automation (ICRA), pages 111–116, Piscataway, NJ. IEEE.

Conover, W. J. (1999). Practical Nonparametric Statistics. Wiley, New York.

Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of appli-
cation. In Proceedings of the 2004 International Conference on Swarm Robotics, volume
3342 of LNCS, pages 10–20, Berlin, Germany. Springer.

Cybenko, G. (1989). Approximations by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2(4):303–314.

Di Mario, E. and Martinoli, A. (2014). Distributed particle swarm optimization for
limited-time adaptation with real robots. Robotica, 32(02):193–208.

Di Mario, E. L., Navarro Oiza, I., and Martinoli, A. (2015). A distributed noise-
resistant particle swarm optimization algorithm for high-dimensional multi-robot
learning. In IEEE International Conference on Robotics and Automation (ICRA), pages
5970 – 5976, Piscataway, NJ. IEEE.

Doncieux, S. and Mouret, J.-B. (2014). Beyond black-box optimization: a review of
selective pressures for evolutionary robotics. Evolutionary Intelligence, 7(2):71–93.

Dorigo, M., Birattari, M., and Brambilla, M. (2014). Swarm robotics. Scholarpedia,
9(1):1463.

Duarte, M., Costa, V., Gomes, J. C., Rodrigues, T., Silva, F., Oliveira, S. M., and Chris-
tensen, A. L. (2016). Evolution of collective behaviors for a real swarm of aquatic
surface robots. PLOS ONE, 11(3):1–25.

Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014a). Evolution of hierarchical
controllers for multirobot systems. In Artificial Life (ALIFE), pages 657–664, Cam-
bridge, MA. MIT Press.

Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014b). Hybrid control for large
swarms of aquatic drones. In Artificial Life (ALIFE), pages 785–792, Cambridge
MA, USA. MIT Press.

Dudek, G., Jenkin, M. R. M., Milios, E., and Wilkes, D. (1996). A taxonomy for multi-
agent robotics. Autonomous Robots, 3(4):375–397.

Elfwing, S., Uchibe, E., Doya, K., and Christensen, H. I. (2011). Darwinian embodied
evolution of the learning ability for survival. Adaptive Behavior, 19(2):101–120.

100 BIBLIOGRAPHY

Ferrante, E., Guzmán, E. D., Turgut, A. E., and Wenseleers, T. (2013). GESwarm:
Grammatical evolution for the automatic synthesis of collective behaviors in
swarm robotics. In Proceedings of the 15th Annual Conference on Genetic and Evo-
lutionary Computation (GECCO), pages 17–24. ACM, New York, NJ.

Ferrante, E., Turgut, A., Duéñez-Guzmán, E., Dorigo, M., and Wenseleers, T. (2015).
Evolution of self-organized task specialization in robot swarms. PLOS Computa-
tional Biology, 11(8):e1004273.

Floreano, D., Husbands, P., and Nolfi, S. (2008). Evolutionary robotics. In Siciliano,
B. and Khatib, O., editors, Springer Handbook of Robotics, pages 1423–1451. Springer,
Berlin, Germany.

Floreano, D. and Keller, L. (2010). Evolution of adaptive behaviour in robots by
means of Darwinian selection. PLOS Biology, 8(1):e1000292.

Ford, M. (2015). Rise of the Robots: Technology and the Threat of a Jobless Future. Basic
Books.

Francesca, G. and Birattari, M. (2016). Automatic design of robot swarms: achieve-
ments and challenges. Frontiers in Robotics and AI, 3(29):1–9.

Francesca, G. and Birattari, M. (2017). A modular approach to the automatic design
of control software for robot swarms from a novel perspective on the reality gap
to AutoMoDe. Supplementary material. Available at http://iridia.ulb.ac.
be/supp/IridiaSupp2017-002/.

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G.,
Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Mascia, F., Trianni, V., and Bi-
rattari, M. (2015). AutoMoDe-Chocolate: automatic design of control software for
robot swarms. Swarm Intelligence, 9(2–3):125–152.

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G.,
Reina, A., Soleymani, T., Salvaro, M., Pinciroli, C., Trianni, V., and Birattari, M.
(2014a). An experiment in automatic design of robot swarms. In Dorigo, M.,
Birattari, M., Garnier, S., Hamann, H., Montes de Oca, M., Solnon, C., and Stützle,
T., editors, Swarm Intelligence, ANTS 2014, volume 8667 of LNCS, pages 25–37.
Springer, Berlin, Germany.

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., and Birattari, M. (2014b). Au-
toMoDe: A novel approach to the automatic design of control software for robot
swarms. Swarm Intelligence, 8(2):89–112.

http://iridia.ulb.ac.be/supp/IridiaSupp2017-002/
http://iridia.ulb.ac.be/supp/IridiaSupp2017-002/

BIBLIOGRAPHY 101

Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., and Birattari, M. (2012).
Analysing an evolved robotic behaviour using a biological model of collegial deci-
sion making. In From Animals to Animats 12, volume 7426 of LNCS, pages 381–390,
Berlin, Germany. Springer.

Garattoni, L. and Birattari, M. (2016). Swarm robotics. Wiley Encyclopedia of Electrical
and Electronics Engineering, pages 1–19.

Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., and Birattari, M. (2015). Soft-
ware infrastructure for e-puck (and TAM). Technical Report 2015-004, IRIDIA,
Université Libre de Bruxelles, Brussels, Belgium.

Gardelli, L., Viroli, M., and Omicini, A. (2007). Design patterns for self-organising
systems. In Burkhard, H.-D., Lindemann, G., Verbrugge, R., and Varga, L. Z.,
editors, Multi-Agent Systems and Applications V, volume 4696 of LNCS, pages 123–
132. Springer, Berlin, Germany.

Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R. (2014a). Clustering objects with
robots that do not compute. In Lomuscio, A. et al., editors, Autonomous Agents and
Multiagent Systems (AAMAS), pages 421–428, Richland, SC. IFAAMAS.

Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R. (2014b). Self-organized aggrega-
tion without computation. The International Journal of Robotics Research, 33(8):1145–
1161.

Gazi, V. and Fidan, B. (2007). Coordination and control of multi-agent dynamic
systems: models and approaches. In Şahin, E., Spears, W. M., and Winfield, A.
F. T., editors, Swarm Robotics, volume 4433 of LNCS, pages 71–102. Springer, Berlin,
Germany.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the bias/-
variance dilemma. Neural Computation, 4(1):1–58.

Gerkey, B. P. and Matarić, M. J. (2004). A formal analysis and taxonomy of task
allocation in multi-robot systems. The International Journal of Robotics Research,
23(9):939–954.

Gomes, J., Urbano, P., and Christensen, A. L. (2013). Evolution of swarm robotics
systems with novelty search. Swarm Intelligence, 7(2-3):115–144.

Gusikhin, O., Filev, D., and Rychtyckyj, N. (2008). Intelligent Vehicle Sys-
tems:Applications and New Trends, pages 3–14. Springer, Berlin, Germany.

102 BIBLIOGRAPHY

Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., and Mag-
dalena, L. (2009). Open E-puck range & bearing miniaturized board for local com-
munication in swarm robotics. In 2009 IEEE International Conference on Robotics and
Automation (ICRA), pages 3111–3116, Piscataway, NJ. IEEE Press.

Haasdijk, E., Bredeche, N., and Eiben, A. (2014). Combining environment-driven
adaptation and task-driven optimisation in evolutionary robotics. PLOS ONE,
9(6):e98466.

Hamann, H. and Wörn, H. (2008). A framework of space–time continuous models
for algorithm design in swarm robotics. Swarm Intelligence, 2(2):209–239.

Harvest (2008). Harvest automation, inc. Available at https://www.harvestai.
com. Accessed January, 2016.

Harvey, I., Husbands, P., Cliff, D., Thompson, A., and Jakobi, N. (1997). Evolutionary
robotics: The Sussex approach. Robotics and Autonomous Systems, 20(2):205–224.

Hauert, S., Berman, S., Nagpal, R., and Bhatia, S. N. (2013). A computational frame-
work for identifying design guidelines to increase the penetration of targeted
nanoparticles into tumors. Nano Today, 8(6):566–576.

Hauert, S. and Bhatia, S. N. (2014). Mechanisms of cooperation in cancer
nanomedicine: towards systems nanotechnology. Trends Biotechnol., 32(9):448–455.
Special Issue: Next Generation Therapeutics.

Hauert, S., Zufferey, J.-C., and Floreano, D. (2008). Evolved swarming without po-
sitioning information: An application in aerial communication relay. Autonomous
Robots, 26(1):21–32.

Hecker, J. P., Letendre, K., Stolleis, K., Washington, D., and Moses, M. E. (2012).
Formica ex machina: Ant swarm foraging from physical to virtual and back again.
In Dorigo, M., Birattari, M., Blum, C., Christensen, A. L., Engelbrecht, A. P., Groß,
R., and Stützle, T., editors, Swarm Intelligence, ANTS 2012, volume 7461 of LNCS,
pages 252–259, Berlin, Germany. Springer.

Hsieh, M., Loizou, S., and Kumar, V. (2007). Stabilization of multiple robots on
stable orbits via local sensing. In International Conference on Robotics and Automation
(ICRA), pages 2312–2317, Piscataway, NJ. IEEE Press.

Iocchi, L., Nardi, D., and Salerno, M. (2001). Reactivity and deliberation: a survey
on multi-robot systems. In Balancing Reactivity and Social Deliberation in Multi-agent
Systems, volume 2103 of LNCS, pages 9–32. Springer, Berlin, Germany.

https://www.harvestai.com
https://www.harvestai.com

BIBLIOGRAPHY 103

Jakobi, N. (1997). Evolutionary robotics and the radical envelope-of-noise hypothe-
sis. Adaptive Behavior, 6(2):325–368.

Jakobi, N., Husbands, P., and Harvey, I. (1995). Noise and the reality gap: The use of
simulation in evolutionary robotics. In Advances in Artificial Life (ECAL), volume
929 of LNCS, pages 704–720, Berlin, Germany. Springer.

Kazadi, S., Lee, J. R., and Lee, J. (2007). Artificial physics, swarm engineering, and
the hamiltonian method. In World Congress on Engineering and Computer Science,
pages 623–632, Hong Kong. Newswood.

Kazadi, S., Lee, J. R., and Lee, J. (2009). Model independence in swarm robotics.
International Journal of Intelligent Computing and Cybernetics, 2(4):672–694.

König, L. and Mostaghim, S. (2009). Decentralized evolution of robotic behavior
using finite state machines. International Journal of Intelligent Computing and Cyber-
netics, 2(4):695–723.

Koos, S., Cully, A., and Mouret, J.-B. (2013a). Fast damage recovery in robotics with
the t-resilience algorithm. The International Journal of Robotics Research, 32(14):1700–
1723.

Koos, S., Mouret, J.-B., and Doncieux, S. (2013b). The transferability approach:
Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary
Computation, 17(1):122–145.

Kuhn, T. (1962). The Structure of Scientific Revolutions. University of Chicago Press,
Chicago IL, USA.

Kulich, M., Chudoba, J., Kosnar, K., Krajnik, T., Faigl, J., and Preucil, L. (2013).
Syrotek–distance teaching of mobile robotics. IEEE Transactions on Education,
56(1):18–23.

Lee, J. and Arkin, R. C. (2003). Adaptive multi-robot behavior via learning momen-
tum. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 2029–2036, Piscataway, NJ. IEEE Press.

Lee, J., Kao, H.-A., and Yang, S. (2014). Service innovation and smart analytics for
industry 4.0 and big data environment. Procedia CIRP, 16:3 – 8.

Lehman, J., Risi, S., D’Ambrosio, D., and O Stanley, K. (2013). Encouraging reactivity
to create robust machines. Adaptive Behavior - Animals, Animats, Software Agents,
Robots, Adaptive Systems, 21(6):484–500.

104 BIBLIOGRAPHY

Lehman, J. and Stanley, K. O. (2011). Abandoning objectives: Evolution through the
search for novelty alone. Evolutionary Computation, 19(2):189–223.

Lerman, K. and Galstyan, A. (2002). Mathematical model of foraging in a group of
robots: effect of interference. Autonomous Robots, 13(2):127–141.

Lerman, K., Galstyan, A., Martinoli, A., and Ijspeert, A. J. (2001). A macroscopic
analytical model of collaboration in distributed robotic systems. Artificial Life,
7(4):375–393.

Letzing, J. (2012). Amazon adds that robotic touch. The Wall Street Journal.

Ligot, A., Hasselmann, K., Delhaisse, B., Garattoni, L., Francesca, G., and Birattari,
M. (2017). AutoMoDe and NEAT implementations for the e-puck robot in AR-
GoS3. Technical Report TR/IRIDIA/2017-002, IRIDIA, Université Libre de Brux-
elles, Brussels, Belgium.

Liu, W., Winfield, A., Sa, J., Chen, J., and Dou, L. (2007). Strategies for energy optimi-
sation in a swarm of foraging robots. In Şahin, E., Spears, W. M., and Winfield, A.
F. T., editors, Swarm Robotics, volume 4433 of LNCS, pages 14–26. Springer, Berlin,
Germany.

Liu, W. and Winfield, A. F. (2010). Modeling and optimization of adaptive foraging
in swarm robotic systems. The International Journal of Robotics Research, 29(14):1743–
1760.

Lopes, Y. K., Leal, A., Dodd, T. J., and Groß, R. (2014). Application of supervisory
control theory to swarms of e-puck and kilobot robots. In Dorigo, M., Birattari,
M., Garnier, S., Hamann, H., Montes de Oca, M., Solnon, C., and Stützle, T., edi-
tors, Swarm Intelligence, ANTS 2014, volume 8667 of LNCS, pages 62–73. Springer,
Berlin, Germany.

Lopes, Y. K., Trenkwalder, S. M., Leal, A. B., Dodd, T. J., and Groß, R. (2016). Super-
visory control theory applied to swarm robotics. Swarm Intelligence, 10(1):65–97.

López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., and Birattari, M. (2011). The irace
package, iterated race for automatic algorithm configuration. Technical Report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium.

Lubin, G. (2011). Presenting the robot farmers of the future. Available at http:
//read.bi/s8Q0SA. Accessed January, 2016.

http://read.bi/s8Q0SA
http://read.bi/s8Q0SA

BIBLIOGRAPHY 105

MacKay, W. P. (1981). A comparison of the nest phenologies of three species of
pogonomyrmex harvester ants (hymenoptera: Formicidae). Psyche, 88(1-2):25–74.

Martinoli, A., Easton, K., and Agassounon, W. (2004). Modeling swarm robotic sys-
tems: a case study in collaborative distributed manipulation. The International
Journal of Robotics Research, 23(4–5):415–436.

Martinoli, A., Ijspeert, A. J., and Mondada, F. (1999). Understanding collective aggre-
gation mechanisms: From probabilistic modelling to experiments with real robots.
Robotics and Autonomous Systems, 29(1):51–63.

Matarić, M. J. (2001). Learning in Behavior-Based Multi-Robot Systems: Policies,
Models, and Other Agents. Cognitive Systems Research, 2(1):81–93.

Matarić, M. J. and Cliff, D. (1996). Challenges in evolving controllers for physical
robots. Robotics and Autonomous Systems, 19(1):67–83.

McCulloch, W. and Pitts, W. (1943). A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5(4):115–133.

Miglino, O., Lund, H. H., and Nolfi, S. (1995). Evolving mobile robots in simulated
and real environments. Artificial Life, 2(4):417–434.

Minsky, M. and Papert, S. (1969). Perceptrons: An Introduction to Computational Geom-
etry. MIT Press, Cambridge, MA.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.-C., Floreano, D., and Martinoli, A. (2009a). E-puck website. Last
checked on November 2013.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.-C., Floreano, D., and Martinoli, A. (2009b). The e-puck, a robot
designed for education in engineering. In Proceedings of the 9th Conference on Au-
tonomous Robot Systems and Competitions, pages 59–65, Castelo Branco, Portugal.
IPCB: Instituto Politécnico de Castelo Branco.

Mondada, F., Franzi, E., and Guignard, A. (1999). The Development of Khepera. In
Experiments with the Mini-Robot Khepera, Proceedings of the First International Khepera
Workshop, HNI-Verlagsschriftenreihe, Heinz Nixdorf Institut, pages 7–14.

Mondada, F., Franzi, E., and Ienne, P. (1993). Mobile robot miniaturization: A tool
for investigation in control algorithms. In Yoshikawa, T. and Miyazaki, F., editors,
Experimental Robotics III, pages 501–513, Berlin, Germany. Springer.

106 BIBLIOGRAPHY

Morgan, N. and Bourlard, H. (1990). Generalization and parameter estimation in
feedforward nets: Some experiments. In Touretzky, D., editor, Advances in Neural
Information Processing Systems 2, NIPS 1990, pages 630–637. Morgan Kaufman, San
Mateo, CA.

Nilsson, N. J. (1984). Shakey the robot. Technical Report 323, AI Center, SRI Interna-
tional, Menlo Park, CA, USA.

Nolfi, S. and Floreano, D. (2000). Evolutionary Robotics. MIT Press, Cambridge, MA.

Nouyan, S., Groß, R., Bonani, M., Mondada, F., and Dorigo, M. (2009). Teamwork
in self-organized robot colonies. IEEE Transactions on Evolutionary Computation,
13(4):695–711.

Parker, L. E. (1996a). On the design of behavior-based multi-robot teams. Journal of
Advanced Robotics, 10:547–578.

Parker, L. E. (1996b). Task-oriented multi-robot learning in behavior-based systems.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1478–1487, Piscataway, NJ. IEEE.

Parker, L. E. (1997). L-ALLIANCE: task-oriented multi-robot learning in behavior-
based systems. Advanced Robotics, 11(4):305–322.

Parker, L. E. (2000). Current state of the art in distributed autonomous mobile
robotics. In Parker, L. E., Bekey, G., and Barhen, J., editors, Distributed Autonomous
Robotic Systems 4, pages 3–12. Springer, Tokyo, Japan.

Pinciroli, C., Lee-Brown, A., and Beltrame, G. (2015). Buzz: an extensible program-
ming language for self-organizing heterogeneous robot swarms. Available online
at http://arxiv.org/abs/1507.05946.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews,
N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L. M., and
Dorigo, M. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intelligence, 6(4):271–295.

Prechelt, L. (1998). Early stopping – but when? In Montavon, G., B. Orr, G., and
Müller, K.-R., editors, Neural Networks: Tricks of the Trade, volume 1524 of LNCS,
pages 55–69. Springer, Berlin, Germany.

Pugh, J. and Martinoli, A. (2009). Distributed scalable multi-robot learning using
particle swarm optimization. Swarm Intelligence, 3(3):203–222.

BIBLIOGRAPHY 107

Quinn, M., Smith, L., Mayley, G., and Husbands, P. (2003). Evolving controllers for
a homogeneous system of physical robots: structured cooperation with minimal
sensors. Philosophical Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 361(1811):2321–2343.

R Development Core Team (2008). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

Rabin, M. O. (1963). Probabilistic automata. Inform. Control, 6(3):230–245.

Radziwon, A., Bilberg, A., Bogers, M., and Madsen, E. S. (2014). The smart fac-
tory: exploring adaptive and flexible manufacturing solutions. Procedia Engineer-
ing, 69:1184–1190.

Raskutti, G., Wainwright, M. J., and Yu, B. (2014). Early stopping and non-parametric
regression: an optimal data-dependent stopping rule. Journal of Machine Learning
Research, 15:335–366.

Reina, A. (2016). Engineering swarm systems: A design pattern for the best-of-n decision
problem. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium.

Reina, A., Dorigo, M., and Trianni, V. (2014). Towards a cognitive design pattern for
collective decision-making. In Dorigo, M., Birattari, M., Garnier, S., Hamann, H.,
Montes de Oca, M., Solnon, C., and Stützle, T., editors, Swarm Intelligence, ANTS
2014, volume 8667 of LNCS, pages 194–205. Springer, Berlin, Germany.

Reina, A., Miletitch, R., Dorigo, M., and Trianni, V. (2015a). A quantitative micro–
macro link for collective decisions: the shortest path discovery/selection example.
Swarm Intelligence, 9(2-3):75–102.

Reina, A., Salvaro, M., Francesca, G., Garattoni, L., Pinciroli, C., Dorigo, M., and
Birattari, M. (2015b). Augmented reality for robots: Virtual sensing technology
applied to a swarm of e-pucks. In NASA/ESA Conference on Adaptive Hardware and
Systems, pages 1–6, Los Alamitos, CA. IEEE Computer Society Press.

Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., and Trianni, V. (2015c). A
design pattern for decentralised decision making. PLOS ONE, 10(10):e0140950.

RHEA (2010). Rhea project. Available at http://www.rhea-project.eu. Ac-
cessed January, 2016.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408.

http://www.rhea-project.eu

108 BIBLIOGRAPHY

Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., and Nagpal, R. (2014a). Kilobot: A
low cost robot with scalable operations designed for collective behaviors. Robotics
and Autonomous Systems, 62(7):966–975.

Rubenstein, M., Cornejo, A., and Nagpal, R. (2014b). Programmable self-assembly
in a thousand-robot swarm. Science, 345(6198):795–799.

Sartoretti, G., Hongler, M.-O., de Oliveira, M. E., and Mondada, F. (2014). Decentral-
ized self-selection of swarm trajectories: from dynamical systems theory to robotic
implementation. Swarm Intelligence, 8(4):329–351.

Sarvašová, N., Ulbrich, P., Tokárová, V., Zadražil, A., and Štěpánek, F. (2015). Arti-
ficial swarming: Towards radiofrequency control of reversible micro-particle ag-
gregation and deposition. Powder Technology, 278:17 – 25.

Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural
Networks, 61:85–117.

Silva, F., Duarte, M., Correia, L., Oliveira, S. M., and Christensen, A. L. (2015a). Open
issues in evolutionary robotics. Evolutionary Computation, 24(2):205–236.

Silva, F., Urbano, P., Correia, L., and Christensen, A. L. (2015b). odNEAT: An algo-
rithm for decentralised online evolution of robotic controllers. Evolutionary Com-
putation, 23(3):421–449.

Son, D. W., Chang, Y. S., Kim, N. U., and Kim, W. R. (2016). Design of warehouse
contol system for automated warehouse environment. In 5th IIAI International
Congress on Advanced Applied Informatics (IIAI-AAI), pages 980–984.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through aug-
menting topologies. Evolutionary Computation, 10(2):99–127.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society. Series B (Methodological), 36(2):111–147.

Stranieri, A., Turgut, A., Salvaro, M., Garattoni, L., Francesca, G., Reina, A., Dorigo,
M., and Birattari, M. (2013). IRIDIA’s arena tracking system. Technical Report
TR/IRIDIA/2013-013, IRIDIA, Université Libre de Bruxelles, Belgium.

Sun, Z., Bebis, G., and Miller, R. (2006). On-road vehicle detection: a review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(5):694–711.

BIBLIOGRAPHY 109

Teo, J. and Abbass, H. (2004). Automatic generation of controllers for embodied
legged organisms: A pareto evolutionary multi-objective approach. Evolutionary
Computation, 12(3):355–394.

Teo, J. and Abbass, H. (2005). Multiobjectivity and complexity in embodied cogni-
tion. IEEE Transactions on Evolutionary Computation, 9(4):337–360.

Trianni, V. (2008). Evolutionary swarm robotics. Springer, Berlin, Germany.

Trianni, V. (2014). Evolutionary robotics: Model or design? Frontiers in Robotics and
AI, 1(13):1–6.

Trianni, V. and López-Ibáñez, M. (2015). Advantages of task-specific multi-objective
optimisation in evolutionary robotics. PLOS ONE, 10(8):e0136406.

Trianni, V. and Nolfi, S. (2009). Self-organising sync in a robotic swarm. A dynamical
system view. IEEE Transactions on Evolutionary Computation, 13(4):722–741.

Trianni, V. and Nolfi, S. (2011). Engineering the evolution of self-organizing behav-
iors in swarm robotics: A case study. Artificial Life, 17(3):183–202.

University of Copenhagen (2011). Aseta project. Available at http://plen.ku.
dk/english/research/crop_sciences/plant_protection/aseta/.
Accessed January, 2016.

Usui, Y. and Arita, T. (2003). Situated and embodied evolution in collective evo-
lutionary robotics. In International Symposium on Artificial Life and Robotics, pages
212–215, Berlin, Germany. Springer.

Valentini, G. (2016). The best-of-n problem in robot swarms. PhD thesis, Université Libre
de Bruxelles, Brussels, Belgium.

Valentini, G., Brambilla, D., Hamann, H., and Dorigo, M. (2016a). Collective percep-
tion of environmental features in a robot swarm. In Swarm Intelligence, ANTS 2016,
LNCS, pages 65–76, Berlin, Germany. Springer.

Valentini, G., Ferrante, E., Hamann, H., and Dorigo, M. (2016b). Collective deci-
sion with 100 Kilobots: Speed versus accuracy in binary discrimination problems.
Autonomous Agents and Multi-Agent Systems (AAMAS), 30(3):553–580.

Valentini, G., Hamann, H., and Dorigo, M. (2014). Self-organized collective decision
making: The weighted voter model. In Lomuscio, A., Scerri, P., Bazzan, A., and
Huhns, M., editors, Proceedings of the 13th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 45–52. IFAAMAS.

http://plen.ku.dk/english/research/crop_sciences/plant_protection/aseta/
http://plen.ku.dk/english/research/crop_sciences/plant_protection/aseta/

110 BIBLIOGRAPHY

Waibel, M., Keller, L., and Floreano, D. (2009). Genetic team composition and level
of selection in the evolution of cooperation. IEEE Transactions on Evolutionary Com-
putation, 13(3):648–660.

Watson, R., Ficici, S., and Pollack, J. (1999). Embodied evolution: Embodying an
evolutionary algorithm in a population of robots. In IEEE Congress on Evolutionary
Computation (CEC), volume 1, pages 335 – 342, Piscataway, NJ. IEEE.

Watson, R., Ficici, S., and Pollack, J. (2002). Embodied evolution: Distributing an
evolutionary algorithm in a population of robots. Robotics and Autonomous Systems,
39(1):1–18.

Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Be-
havioral Sciences. PhD thesis, Harvard University, Cambridge, MA.

Werfel, J., Petersen, K., and Nagpal, R. (2014). Designing collective behavior in a
termite-inspired robot construction team. Science, 343(6172):754–758.

Wischmann, S., Stamm, K., and Wörgötter, F. (2007). Embodied evolution and learn-
ing: The neglected timing of maturation. In Almeida e Costa, F., Rocha, L. M.,
Costa, E., Harvey, I., and Coutinho, A., editors, Advances in artificial life (ECAL),
volume 4648 of LNCS, pages 284–293, Berlin, Germany. Springer.

Wolpert, D. (1997). On bias plus variance. Neural Computation, 9(6):1211–1243.

Yang, G.-Z. and McNutt, M. (2016). Robotics takes off. Science, 352(6291):1255–1255.

Zeiger, F., Schmidt, M., and Schilling, K. (2009). Remote experiments with mobile-
robot hardware via internet at limited link capacity. IEEE Transactions on Industrial
Electronics, 56(12):4798–4805.

	Abstract
	Acknowledgments
	Contents
	Introduction
	State of the art
	Swarm robotics
	Characteristics of a robot swarm
	Properties of a robot swarm
	Differences between swarm robotics and traditional approaches
	Possible applications

	The design problem in swarm robotics
	Manual design
	Trial-and-error design
	Principled manual design

	Automatic design
	Off-line methods
	On-line methods

	Challenges
	Summary

	AutoMoDe
	The reality gap problem
	Facts and Hypotheses
	Performance vs Representational Power
	The specialization of AutoMoDe

	Performance vs Training Effort
	Robot platform and reference model
	Design Method
	Task
	Protocol
	Results
	Discussion

	Summary

	AutoMoDe-Vanilla
	Proof of concept: AutoMoDe-Vanilla
	Robot platform and reference model
	Module set
	Optimization process

	Experimental setup
	A yardstick: EvoStick
	Tasks

	Results
	Aggregation
	Foraging

	Discussion
	Summary

	From Vanilla to Chocolate
	Two manual design methods for a swarm of e-pucks
	U-Human
	C-Human

	StudyA: comparison of four design methods for RM1
	Experimental protocol
	Per-task results
	Aggregate analysis and discussion

	Chocolate
	StudyB: assessment of Chocolate
	Experimental protocol
	Per-task results
	Aggregate analysis and discussion

	Summary

	Conclusions
	Bibliography

