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Abstract The reality gap—the discrepancy between reality and simulation—
is a critical issue in the off-line automatic design of control software for robot
swarms, as well as for single robots. It is understood that the reality gap
manifests itself as a drop in performance: when control software generated in
simulation is ported to physical robots, the performance observed is often dis-
appointing compared with the one obtained in simulation. In this paper, we
investigate whether, to observe the effects of the reality gap, it is necessary to
assume that the control software is designed in a context that is simpler than
the one in which it is evaluated. In a first experiment, we show that a perfor-
mance drop may be observed also in an artificial, simulation-only reality gap:
control software is generated on the basis of a simulation model and assessed
on a second one. We will call this second model a pseudo-reality. We selected
the simulation model to be used as a pseudo-reality by trial and error, so as to
qualitatively replicate previously published observations made in experiments
with physical robots. The results show that a performance drop occurs even if
we can exclude that pseudo-reality is more complex than the simulation model
used for the design. In a second experiment, we eliminate the trial-and-error
selection of the first experiment by evaluating control software across multi-
ple pseudo-realities, which are sampled around the original simulation model
used for the design. The results of the second experiment confirm those of the
first one and show that they do not depend on the specific pseudo-reality we
previously selected by trial and error. Moreover, they suggest that one could
use multiple pseudo-realities to evaluate automatic design methods and, from
this simulation-only evaluation, infer their robustness to the reality gap.
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1 Introduction

Inspired by swarm intelligence principles (Dorigo and Birattari 2007), swarm
robotics is an engineering discipline whose ultimate goal is to design large
groups of robots that coordinate autonomously (Beni 2004; Şahin 2004; Ham-
ann 2018). In a swarm, robots have local sensing and communication capa-
bilities, and do not rely on a robot leader or external infrastructures. The
collective behavior emerges from the interaction between the neighboring in-
dividuals, and between the individuals and the environment. Because of its de-
centralized nature, a robot swarm cannot be programmed as a whole: only the
individuals can be. Conceiving the individual behavior such that the desired
global behavior emerges is a difficult endeavor. To address it, various manual
and automatic approaches have been proposed in the literature (Brambilla
et al. 2013).

Manual approaches typically rely on the skill and ingenuity of a human
designer. Methods exist that can guide the designer to achieve specific global
behaviors (Hamann and Wörn 2008; Berman et al. 2011; Brambilla et al.
2015; Reina et al. 2015). However, no generally applicable methodology exists,
yet. Automatic approaches implement a sort of design by optimization: by
searching for an appropriate instance of the control software of the individual
robots, an optimization algorithm maximizes a mission-dependent measure
of the collective performance of the swarm (Francesca and Birattari 2016).
Automatic design methods can be further classified as either on-line or off-
line.

In on-line methods, the design process takes place after the robots are de-
ployed in the target environment (Lee and Arkin 2003; Watson et al. 2002;
König and Mostaghim 2009; Bredeche et al. 2012; Haasdijk et al. 2014; Silva
et al. 2015). A distributed optimization process, running on the robots them-
selves, iteratively improves the control software on the basis of their perfor-
mance, while the robots perform their mission in the target environment. On-
line methods suffer from a number of drawbacks (Francesca and Birattari
2016), among which: (i) they can handle only a relatively small search space,
and as a consequence, might be appropriate for optimizing a few parameters
but not for fully designing the behavior of the robots; (ii) their application is
limited to the case in which the robots can evaluate their collective, instanta-
neous performance; and (iii) when testing suboptimal instances of control soft-
ware (or values of the parameters to be optimized), they may cause damages
to the robots and/or to the environment. Although promising for a number
of specific applications, we do not deem them as the ultimate solution to the
automatic design problem in swarm robotics.

In off-line methods, the design process relies on simulation to reproduce
relevant features of the target environment in which the robot will be even-
tually deployed (Francesca and Birattari 2016). Because the assessment of
performance is much faster and cheaper in simulation than on physical robots,
off-line methods can explore a larger space of possible instances of control
software in a relatively short time. In addition, simulation provides a God-
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eye view of the swarm, which allows off-line methods to evaluate any possible
performance metric. Finally, damaging robots or the environment is irrelevant
when they are simulated entities.

However, contrary to on-line methods, off-line methods are faced with the
so-called reality gap: the difference between simulation and reality, which might
be subtle but is unavoidable (Brooks 1992; Jakobi et al. 1995). Due to the
reality gap, it is likely that robot swarms do not display the same behavior in
simulation and in reality (Floreano et al. 2008). Several approaches have been
proposed to cross the reality gap satisfactorily—see Section 2. However, none of
them has been studied in details, no extensive comparison has been produced,
and the reality gap remains an important issue for off-line methods (Francesca
and Birattari 2016; Silva et al. 2016).

According to the domain literature, the reality gap manifests itself in the
form of a performance drop when control software designed in simulation is
ported to physical robots (Floreano et al. 2008; Francesca et al. 2014). It is
also understood that the performance drop is a relative problem: instances of
control software produced by different methods or under different conditions
may be affected to different degrees. This can lead to a phenomenon that we
call rank inversion: an instance of control software outperforms another one in
simulation, but is outperformed by the latter when they are evaluated on phys-
ical robots (Francesca et al. 2014; Birattari et al. 2016). On the other hand,
what remains an open issue is the true nature of the reality gap. Often, the
effects of the reality gap are explained by saying that the optimization process
exploits inaccuracies of the simulation models to produce unrealistic behaviors
that achieve high performance. Indeed, simulators often neglect some complex
physical phenomena, which make them inaccurate but fast. This because ac-
curate simulations would be too time consuming— possibly even more than
experiments with real robots—which would lead to prohibitively long opti-
mization processes (Nolfi et al. 1994; Koos et al. 2013).

In the literature, the effects of the reality gap have only been observed
when control software has been developed in a relatively simpler setting for
then being tested in a more complex one. This holds true for the most common
case in which control software is developed in simulation and then tested on
real robots. It also holds true for a single but relevant case in which control
software has been developed using a first simulator and then tested using a
second one. Indeed, to the best of our knowledge, Koos et al. (2013) have been
the only ones to consider an artificial, simulation-only reality gap, which they
used to investigate the properties of a method they proposed to handle the
reality gap—see Section 2. Their artificial reality gap relies on a simplified
simulator to be used in the design, and an accurate one to be used for the
evaluation.

In the present paper, we investigate whether, to observe the effects of the
reality gap, it is necessary to assume that the control software is evaluated in
a context that is more complex than the one in which it is designed. We shall
call this assumption the complexity assumption. Through our investigation, we
bring empirical evidence that the effects of the reality gap appear even in cases
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in which we can exclude that the evaluation is performed in a context that is
more complex than the one in which control software is designed. Our results
indicate that performance drops should be ascribed to a sort of overfitting
of the conditions experienced in the design phase, regardless of the fact that
these conditions are more or less complex than those faced in the evaluation
phase. The core device that enables the research we present in the paper is
an artificial, simulation-only reality gap: control software is designed on the
basis of a simulation model Mx and evaluated on a second simulation model
My, which we shall call a pseudo-reality.

In a first experiment, we create an artificial, simulation-only reality gap
and we address the following research question:

Question Q1: Are performance drop and rank inversion to be necessarily as-
cribed to the fact that control software is evaluated in a context that is
more complex than the one in which it is designed?

We address this question with a procedure that has the logical structure of a
reductio ad absurdum: we show that, in the light of empirical results we pro-
duce, the complexity assumption leads to a contradiction—notably, that one
model should be more and less complex than an other, at once. The procedure
comprises two stages. In a first stage, we reproduce, with simulation-only ex-
periments, the results of Francesca et al. (2014): they observed a rank inversion
when comparing control software generated by two off-line design methods. In
their experiments, the authors generated control software on the basis of a
model, which we shall call MA, and assessed its performance in reality. In our
simulation-only experiment, we also generate control software on the basis of
the same model MA, but we use a second model, which we shall call MB , as a
replacement of reality, a pseudo-reality. Here, we choose MB by trial and error
so that, when used as pseudo-reality to evaluate control software generated on
MA, a rank inversion occurs between the same off-line design methods studied
by Francesca et al. (2014). As designing on MA and evaluating on MB produces
performance drop and rank inversion, if we were to accept the complexity as-
sumption, we would conclude from this first stage that MB is more complex
than MA. In a second stage, we invert the roles of the two models: we automat-
ically design control software on MB and we evaluate it on the pseudo-reality
MA. Also in this second stage, we observe performance drop and rank inversion
that are qualitatively similar to those reported by Francesca et al. (2014). If
we were to accept the complexity assumption, we would conclude that MA is
more complex than MB . The clear contradiction between the conclusions of the
first and second stage disproves the complexity assumption: it is not necessary
to assume that the effects of the reality gap manifest because control software
designed in simulation is evaluated in a more complex (pseudo-)reality.

The results of the first experiment also suggest that one could use an
artificial, simulation-only reality gap to conceive a methodology to predict the
robustness of design methods to the reality gap. This methodology would be
able to predict which of the design methods under analysis is more likely to
produce control software that will suffer from a performance drop; whether the
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observation of a rank inversion is to be expected; and, eventually, which of the
design methods under analysis is more likely to generate control software that
successfully performs a given real-world mission. The trial-and-error approach
we use in the first experiment to create a pseudo-reality is clearly inappropriate
to be adopted in the framework of the methodology we have in mind. The
approach is indeed labor intensive and not easily reproducible. To support the
methodology, we need a way to generate an appropriate pseudo-reality in an
automatic and reliable way.

In a second experiment, we move a step in the direction of creating a
pseudo-reality automatically. We address the following research question:

Question Q2: Can the results of the first experiment be observed with other
pseudo-realities or are they an artifact of the specific pseudo-reality we
employ there?

We study this question by reproducing the previous experiment, but this time
using multiple evaluation models—and therefore, multiple pseudo-realities—
to assess control software generated on the basis of model MA. The different
pseudo-realities are uniformly sampled around model MA. The results of this
second experiment are qualitatively similar to those observed in the first one.
This suggests that a methodology for assessing the intrinsic robustness of
design methods can be devised based on multiple randomly generated pseudo-
realities. By intrinsic robustness we informally refer to the general ability of
a design method to produce control software that transfers seamlessly from
any (reasonable) model to reality, as opposite to the ability to produce control
software that transfers from a specific model to reality.

The following is the structure of the paper. In Section 2, we discuss previ-
ously proposed approaches to handle the reality gap. In Section 3, we describe
materials and methods adopted in two aforementioned experiments. In Sec-
tions 4 and 5, we present the two experiments and we report their results. In
Section 6, we conclude the paper by illustrating our vision on how simulation-
only experiments could be used to assess the intrinsic robustness of automatic
design methods.

2 Related work

A number of approaches have been proposed to handle the reality gap and
reduce the difference between the performance of control software assessed in
simulation and in reality. However, none of these approaches has been studied
in details; as noticed by Koos et al. (2013), some of them are not described
with sufficient detail to be precisely reproduced; no extensive comparison has
been performed; and none of them appears to be the ultimate solution to the
reality gap, which remains a major issue in the off-line automatic design of
control software, as pointed out by Francesca and Birattari (2016) and Silva
et al. (2016) among others.

In this section, we describe their functioning and propose a taxonomy,
which is summarized in Table 1. The majority of the approaches have been
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Table 1 Taxonomy of the approaches to handle the reality gap. We list here the most rele-
vant works for each group of the taxonomy. These works are described in Sections 2.1 to 2.4.

To
Focus on Simulation

models

Design

methods

Reduce differences
between simulation

and reality

Miglino et al. (1995)

Jakobi et al. (1995)

Bongard and Lipson (2004)

Zagal et al. (2004)

Koos et al. (2013)

Enhance robustness
of control software

Jakobi (1997, 1998)

Boeing and Braunl (2012)

Floreano and Mondada (1996)

Urzelai and Floreano (2000)

Floreano and Urzelai (2001)

Francesca et al. (2014, 2015)

proposed in the context of automatic design of behaviors for single robots.
However, they are general enough to be applied to multi-robot systems and
robot swarms.

Some approaches aim at reducing the differences between simulation and
reality as much as possible (Miglino et al. 1995; Jakobi et al. 1995; Bongard
and Lipson 2004; Zagal et al. 2004; Koos et al. 2013), whereas others aim at
making control software robust to these differences (Floreano and Mondada
1996; Jakobi 1997, 1998; Boeing and Braunl 2012; Francesca et al. 2014, 2015).
The first group of approaches appear to be driven by the hypothesis that the
more accurate the simulation, the smoother the transition to reality; the sec-
ond one, by the hypothesis that a fully accurate simulation is impossible and
overfitting is always a risk. The two groups can be further detailed according
to which element of the off-line automatic design process is targeted by the
approach: either the simulation models (Miglino et al. 1995; Jakobi et al. 1995;
Jakobi 1997; Bongard and Lipson 2004; Zagal et al. 2004; Boeing and Braunl
2012) or the design method (Floreano and Mondada 1996; Koos et al. 2013;
Francesca et al. 2014, 2015). Among the methods that focus on the simula-
tion models, some aim at increasing their realism—see Section 2.1. Others use
them to enhance the robustness of the design process—see Section 2.2. Among
the methods that focus on the design process, some aim at conceiving a de-
sign process that avoids exploiting features of simulation that do not match
reality—see Section 2.3. Others aim at making the design process intrinsically
more robust—see Section 2.4.

2.1 Focus on simulation models to reduce differences between simulation and
reality

Miglino et al. (1995) proposed guidelines for conceiving simulations models
such that they represent reality as accurately as possible. The authors recom-
mend to (i) use real-world data sampled from the robot’s sensors and actuators;
and (ii) add noise to models to account for imperfect sensing and actuation.
Furthermore, if a performance drop between simulation and reality is anyway
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observed, the authors suggest to continue the design process on physical robots
for a few iterations. They demonstrated their protocol by generating control
software for a Khepera robot (Mondada et al. 1994) on an obstacle avoidance
task. Subsequently, Jakobi et al. (1995) automatically generated control soft-
ware that behaved almost identically in simulation and in reality. Experiments
were performed with a single Khepera robot on two tasks: obstacle avoidance
and light seeking. According to the authors, the key to this almost perfect
transition from simulation to reality is an appropriate fine-tuning of the levels
of noise within the simulation models. Since the publication of the work of
Jakobi et al. (1995), incorporating sampled data and fine-tuning the noise lev-
els have become common practice in the conception of simulation models—for
a review of the relevant literature, see Silva et al. (2016).

Bongard and Lipson (2004) proposed an approach they called estimation-
exploration, which consists in the simultaneous evolution of control software
and simulation models. The authors generated control software for a quadrupe-
dal robot so that it could walk the longest distance possible. The behavior
produced crossed the reality gap successfully. Zagal et al. (2004) proposed a
similar approach they named back to reality. The method was validated with
a Sony AIBO robot on two tasks: gait optimization and ball-kicking (Zagal
and Ruiz-Del-Solar 2007). The two aforementioned methods differ in the data
used to improve the simulation models: estimation-exploration uses samples
from the physical robot; whereas back to reality uses the performance drop
experienced in reality.

2.2 Focus on simulation models to enhance robustness of control software

Jakobi (1997, 1998) proposed the radical envelope-of-noise hypothesis: in or-
der to cross the reality gap satisfactorily, random variation should be applied
to all aspects of the simulation. In addition, the author suggested to restrict to
minimal simulations: simulators should reproduce only the elements of reality
that are strictly needed to generate the desired behavior. Jakobi demonstrated
the validity of his proposal with three experiments involving different robotic
platforms and a fourth one in computer vision. He automatically designed be-
haviors for: (i) a Khepera robot—turn left or right at the end of a corridor,
depending on the position of a light; (ii) a gantry robot—recognize shapes;
(iii) an octopod robot—walk efficiently and avoid obstacles; and (iv) a com-
puter vision system—track moving objects through a camera.

Although they do not directly cite the work of Jakobi, Peng et al. (2018)
and Andrychowicz et al. (2018) reintroduced his idea of applying random vari-
ation in the simulation models. They proposed a technique called domain
randomization in the context of the application of reinforcement learning to
robotics. Specifically, they showed that, thanks to this technique, control soft-
ware developed in simulation can be successfully ported to physical robots:
Peng et al. (2018) applied the technique to a robotics arm that was required
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to push an object; Andrychowicz et al. (2018) to a manipulator that was re-
quired to rotate an object.

Boeing and Braunl (2012) simultaneously employed two simulators in the
design process to automatically generate control software for the Mako robot,
an autonomous underwater vehicle. The authors showed that, via an exper-
iment in which the Mako robot has to follow a wall, increasing the variance
of the condition experienced in the design process leads to the generation of
control software that crosses the reality gap satisfactorily.

2.3 Focus on design methods to reduce differences between simulation and
reality

Koos et al. (2013) proposed what they called the transferability approach.
In this approach a bi-objective algorithm optimizes: (i) a mission-dependent
performance metric; and (ii) a measure of disparity between performance in
simulation and in reality. The approach aims at constraining the design pro-
cess to generate control software that only exploits features of the simulator
that accurately model reality. The approach uses a model to estimate the dif-
ference between performance in simulation and reality. To build and update it,
periodic robot evaluations of control software generated by the design process
are required. The authors demonstrated their approach in two experiments in-
volving different robotic platforms. In the first one, the navigation experiment
of Jakobi (1997) was reproduced with an e-puck robot (Mondada et al. 2009);
the transferability approach was compared to noise-based approach of Jakobi
(1997, 1998) described in Section 2.2. The instances of control software gener-
ated by the transferability approach crossed the reality gap more satisfactorily
than those generated following the noise-based approach of Jakobi. In the sec-
ond experiment, the authors generated control software for a quadrupedal
robot so that it could walk as much distance as possible. In addition, the au-
thors also performed simulation-only experiments to further study the prop-
erties of the approach. To do so, they created an artificial reality gap between
a simple simulator and a more accurate one, with the latter playing the role
of reality.

2.4 Focus on design methods to enhance robustness of control software

Floreano and Mondada (1996) deviated from the classical implementation of
neuro-evolutionary robotics to propose an approach based on adaptive neuro-
controllers called plastic controllers. In the approach, the update rule of each
neuron and its parameter (learning rate) are selected off-line in simulation.
The synaptic weights of the resulting network are then adapted on-line while
the robot operates in the target environment. Plastic controllers, evolved to
control a Khepera robot in a light switching task, have shown to cross the
reality gap satisfactorily (Urzelai and Floreano 2000; Floreano and Urzelai
2001).
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Francesca et al. (2014) have also deviated from traditional neuro-evolutiona-
ry robotics. They started from the conjecture that neuro-evolutionary robotics
is particularly affected by the effects of the reality gap due to the excessive
representational power of neural networks. As a result, neuro-evolutionary
robotics is likely to overfit the conditions experienced during the design pro-
cess. Guided by the notion of bias-variance tradeoff (Geman et al. 1992), the
authors developed two design methods that produce control software with
restricted representational power: they are the result of the combination of
predefined low-level behaviors. The two methods—AutoMoDe-Vanilla and
AutoMoDe-Chocolate—have shown to produce control software that crosses
the reality gap more satisfactorily than those produced by EvoStick, an im-
plementation of the traditional neuro-evolutionary robotics (Francesca et al.
2014, 2015). These results were further confirmed by follow up studies (Kuck-
ling et al. 2018; Hasselmann et al. 2018b).

3 Materials and methods

In this section, we describe the robots and the simulator used to simulate
them, the off-line automatic design methods, and the missions considered in
our experiments.

3.1 Simulated robots

We consider a version of the e-puck robot whose capabilities have been aug-
mented via several extension modules (Mondada et al. 2009; Garattoni et al.
2015). The e-puck is a small, circular, and two-wheeled modular robot. In the
paper, we adopt the following extension modules: (i) the Overo Gumstix, which
allows Linux to be run on the robot; (ii) the ground sensor module, which al-
lows the robot to detect the gray-level color of the floor situated under the
front part of its body; and (iii) the range-and-bearing module (Gutiérrez et al.
2009), which allows the robot to detect neighboring peers located within an
approximate range of 0.7 m, and to estimate their relative position.

To simulate e-puck robots, we use ARGoS (Pinciroli et al. 2012), an open
source multi-engine simulator, specifically designed to simulate robot swarms.
To model the robot-robot and robot-environment interactions, we use the inte-
grated 2D-dynamics physics engine based on the Chipmunk library. ARGoS is
conceived such that control software that runs in the simulator can be directly
cross-compiled, ported, and executed on the robots without any modification.

We automatically generate control software that has access to a subset
of the robot sensors and actuators, each of them abstracted by appropriate
variables. These variables are updated at every control cycle (that is, every
100 ms). A formal definition of the sensors and actuators, and the correspond-
ing variables is given by the reference model RM 1.1 (Hasselmann et al. 2018a)
of Table 2.
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Table 2 Reference model RM1.1 (Hasselmann et al. 2018a) of the extended version of the
e-puck robot.

sensor/actuator variables
proximity prox i ∈ [0, 1], with i ∈ {0, 1, ..., 7}
light lighti ∈ [0, 1], with i ∈ {0, 1, ..., 7}
ground groundi ∈ {white, gray, black}, with i ∈ {0, 1, 2}
range-and-bearing n ∈ {0, 1, ..., 19}

Vd ∈ ([0.5, 20] , [0, 2π] rad)
wheels vl, vr ∈ [−0.12, 0.12]ms−1

The control software uses eight infrared sensors situated all around the
robot to detect obstacles (prox i) and to measure the ambient light (light i). It
uses three ground sensors to detect the gray level of the floor (ground i). It also
uses the range-and-bearing module to know the relative position of neighboring
robots. The relative range rm and bearing ∠bm of the perceived robots are
aggregated into a vector Vd =

∑n
m=1 (1/ (1 + rm) ,∠bm). In addition to this

vector Vd, the control software has access to the number n of robots perceived.
Finally, the control software sets the velocity of the left and right wheels (vl
and vr), which dictate the displacement of the robot.

In simulation, sensor readings and actuator values are affected by noise that
can be fine-tuned via parameters. For the proximity sensor, a uniform white
noise is applied to the sensor readings and parameter pu controls the level of
noise: at every control cycle, a value in the range [−pu, pu] is uniformly sampled
and added to the reading. This also holds for the light and ground sensors. For
the range-and-bearing module, the robot fails to estimate the relative position
of a neighboring peer with probability pfail . Finally, a Gaussian white noise is
applied to the velocities of each wheel and parameter pg controls the level of
noise: every control cycle, for each wheel, a value is sampled according to a
Gaussian distribution with mean 0 and standard deviation pg, and added to
the velocity.

3.2 Design methods

In the experiments of the paper, we consider three previously proposed off-
line design methods: EvoStick (Francesca et al. 2014); and two instances of
AutoMoDe, Vanilla (Francesca et al. 2014) and Chocolate (Francesca et al.
2015). We briefly describe these methods, and refer the reader to the original
publications for more details.

EvoStick is an implementation of the traditional neuro-evolutionary robo-
tics approach: it generates control software in the form of a neural network, and
uses an evolutionary algorithm to optimize its parameters. The neural network
is fully connected, feedforward, and comprises 24 input nodes, dedicated to the
readings of the robot sensors. Inputs are directly connected to 2 output nodes,
dedicated to the actuators. The input and output nodes are defined on the
basis of the reference model RM 1.1 of Table 2, that is: 8 input nodes for the
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proximity sensors prox i, 8 input nodes for the light sensors light i, 3 input
nodes for the ground sensors ground i, 5 input nodes for the range-and-bearing
module, and 2 output nodes for the velocities of the wheels vl and vr. The
5 input nodes dedicated to the range-and-bearing module are organized as
follows: 4 for the scalar projections of the vector Vd on four unit vectors, and
1 for the number n of robots perceived. Because the topology of the neural
network is fixed, the role of the evolutionary algorithm is to fine-tune the
weights of the connections between the input and output nodes. There is a
total of 50 weights, each in the range [−5.0, 5.0]. The evolutionary algorithm
used by EvoStick has a population size of 100 individuals and it evaluates
each individual 10 times at each iteration.

AutoMoDe is an approach to the automatic design that generates control
software by combining predefined modules. In Vanilla and Chocolate, the
control software produced is in the form of a probabilistic finite-state machine.
The two methods share the same set of modules: 6 low-level behaviors and 6
transition conditions. All the modules have been conceived on the basis of the
reference model RM 1.1 of Table 2, and some of them have parameters that
regulate their functioning. The two methods also share the same design space
that they explore: it comprises all the probabilistic finite-state machines that
can be generated out of the given set of modules, with a maximum of 4 states
and a maximum of 4 outgoing edges per state. The methods automatically
associate to each state one of the 6 low-level behaviors, and to each edge one
of the 6 conditions, which will determine whether the transition between the
states connected by the corresponding edge should happen or not. Vanil-

la and Chocolate only differ in the optimization algorithm they employ to
select, combine, and fine-tune the modules: the former uses F-race (Birattari
et al. 2002; Birattari 2009), the latter uses Iterated F-race (López-Ibáñez et al.
2016).

3.3 Missions

We consider two missions: aggregation and foraging. These missions must
be performed by a swarm comprising 20 e-puck robots in a dodecagonal arena
of 4.91 m2 within a time of 250 s. At the beginning of an experimental run,
we randomly position and orient the robots uniformly in the arena. Figure 1
depicts the simulated arenas for each mission.

3.3.1 aggregation

The robots must aggregate on one of the two black zones, namely a or b.
The size and position of the black zones are given in Figure 1. The objective
function, to be maximized, is

Fa = max(Na, Nb)/N,
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Fig. 1 ARGoS3 representations and technical diagrams of the arenas: aggregation (left)
and foraging (right). Measures are expressed in meters. For foraging, a light is placed
behind the nest so that it is visible from everywhere in the arena.

where Na and Nb are the number of robots located on the zones a and b,
respectively; and N is the total number of robots in the swarm. The objective
function is computed at the end of an experimental run.

3.3.2 foraging

We consider an idealized version of foraging in which the robots must retrieve
to the nest as many items as possible from either of two sources. The food
sources are represented by black circular zones, and the nest by a white zone.
A robot is considered to have picked up or dropped an item when it enters a
black zone or the white zone, respectively. A robot can only carry one object
at a time. A light is placed behind the nest at a height of 0.75 m so that it
is visible from everywhere in the arena. The size and position of sources and
nest are given in Figure 1.

The objective function, to be maximized, is

Ff = I,

where I is the number of items retrieved.
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3.4 Statistics

Throughout the paper, we present the performance of control software with
box-and-whiskers boxplots, and statements such as “method 1 is significantly
better/worse than method 2” imply that significance has been assessed via a
paired Wilcoxon signed rank test, with confidence of at least 95%. Moreover,
to estimate the performance drop experienced in pseudo-reality, we present
95% confidence intervals, also computed via the paired Wilcoxon signed rank
test. Finally, to study the statistical relationship between performance drop
experienced in pseudo reality and (i) performance in simulation, or (ii) width
of the artificial reality gap, we use the Pearson correlation test. The simula-
tion models used, the control software generated, and the experimental data
collected across the two experiments are available online as supplementary
material (Ligot and Birattari 2019).

4 Experiment 1: design model and pseudo-reality are fixed

In this experiment, we address question Q1: we show that the complexity as-
sumption leads to a contradiction and it is therefore unnecessary to assume
that the effects of the reality gap are due to reality being more complex than
simulation models—or equivalently, to simulation models being too simplistic.
To do so, in a first stage that we shall call SAB , we reproduce in simulation the
experiments of Francesca et al. (2014): they used EvoStick and Vanilla to
automatically generate control software on the basis of a simulation model that
we refer to as model MA; they then evaluated this control software on physical
robots. They observed a performance drop that lead to a rank inversion be-
tween the two methods: EvoStick outperformed Vanilla in simulation, but
Vanilla outperformed EvoStick in reality. Here, as Francesca et al. (2014)
did, we generate control software on the basis of MA but, differently from them,
instead of evaluating it on physical robots, we use a pseudo-reality—that is,
a second model that we shall call MB . We choose MB via trial and error so
as to obtain a performance drop and a rank inversion that are qualitatively
similar to those observed by Francesca et al. (2014). If we were to accept the
complexity assumption, we would conclude that MB is more complex than MA.
In a second stage that we shall call SBA, we invert the role of the two models:
control software is designed on MB and tested on the pseudo-reality MA. If,
also in the second stage SBA we observe performance drop and rank inversion,
and if we were to accept the complexity assumption, we would conclude that
MA is more complex than MB . Together with the result of stage SAB , this
would be a contradiction.

As a further contribution we make in this section, we analyze the correla-
tion between performance on the model used for the design and performance
drop experienced in pseudo-reality. This analysis is enabled by the device of
the simulation-only reality gap: thanks to the pseudo-reality, we can perform
a large amount of evaluations that we could not perform on physical robots.
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Table 3 The two models of the e-puck robot. We report the parameters of the noise applied
to the sensor readings and actuator values, and refer the reader to Section 3.1 for the details.
The values for the proximity, light, and ground sensors determine the upper bounds of
symmetric ranges for uniform white noises. The value for the range-and-bearing sensor is
the probability of failing to estimate the relative position of a neighboring peer. The value
for the wheels actuator is the standard deviation of a Gaussian white noise with mean 0.

sensor/actuator MA MB

proximity 0.05 0.05

light 0.05 0.90

ground 0.05 0.05

range-and-bearing 0.85 0.90

wheels 0.05 0.15

In the following, we characterize MA and MB by giving the values of their
parameters, provide details on the experimental protocol, report the results,
and discuss them.

Models. The parameters of models MA and MB are given in Table 3. Model
MA was used by Francesca et al. (2014) to simulate e-puck robots in the context
of the automatic generation of their control software. The authors conceived
MA following the best practice in off-line automatic design: they injected noise
in simulation according to distributions identified on the basis of empirical
data (Miglino et al. 1995; Jakobi et al. 1995). We conceived model MB via
trial and error with the objective of obtaining rank inversion when using MB

as pseudo-reality to evaluate control software generated on the basis of MA.

Protocol. In each stage Sxy—with x and y being A and B, or B and A—we
used EvoStick, Vanilla, and Chocolate to automatically generate control
software for aggregation and foraging. In each stage, control software is
automatically generated on the basis of model Mx, and its performance is
assessed on model My. To measure the performance drop, we also record the
performance on model Mx.

Each design method is executed 20 times with a design budget of 200 000
simulation runs. As an individual execution produces an instance of control
software, each design method yields a total of 20 instances per mission and
stage. All instances of control software are evaluated 20 times on model Mx

and 20 times on model My.

Results. In both stages SAB and SBA, we observe a noticeable performance
drop for EvoStick, which determines a rank inversion—see Figure 2 and 3.
Indeed, when comparing the three design methods on the basis of their per-
formance assessed on model Mx—that is, the design model—EvoStick per-
forms significantly better than both Vanilla and Chocolate. However, when
comparing the methods on the basis of their performance assessed on model
My—that is, the pseudo-reality—both Vanilla and Chocolate perform sig-
nificantly better than EvoStick.
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Fig. 2 aggregation. Left and center : Performance in each stage—the higher, the better.
Narrow boxes represent the performance assessed on the design model; wide boxes represent
the performance assessed on the pseudo-reality. Gray boxes represent performance assessed
on MA; white boxes represent performance assessed on MB . Right : Performance drop, aggre-
gated across the two stages—the lower, the better. The segments represent the upper and
lower bounds on the performance drop experienced in pseudo-reality—bounds are computed
using Wilcoxon statistics, at 95% confidence.

For aggregation, a same instance of control software generated by Evo-

Stick behaves in a qualitatively different way in Mx and in My. In Mx, the
robots tend first to navigate along the walls of the arena, and then to converge
towards peers that are already located on one of the black zones. Once robots
are on a black zone, they remain there, spinning in place. In My, the robots
navigate in small circles without ever converging towards their peers. Eventu-
ally, they fail to find the black zones and to aggregate therein. Quantitatively,
the performance drop that affects the control software generated by EvoStick

is of at least 0.55—see Figure 2 (right). On the other hand, the control soft-
ware produced by Vanilla and Chocolate behaves in a qualitatively similar
way in Mx and My: the robots converge towards their peers to form clusters,
and tend to remain on a black zone once they reach one. Quantitatively, the
performance drop is much smaller than the one experienced by EvoStick: at
most 0.00 and 0.02 for Vanilla and Chocolate, respectively—see Figure 2
(right).

The results for foraging are similar to those of aggregation. Indeed,
the behavior of a same instance of control software generated by EvoStick

is qualitatively different in Mx and My. In Mx, the robots navigate in circles
of radius approximately equal to half the one of the whole arena: they follow
the walls around the nest and cross the arena so that they navigate on at
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Fig. 3 foraging. Left and center : Performance in the two stages—the higher, the bet-
ter. Right : Performance drop, aggregated across the two stages—the lower, the better. See
caption of Figure 2 for a detailed description of the figures.

least one of the two food sources. In My, the robots navigate in much smaller
circles that often do not cross any of the food sources, which results in a drop of
performance of at least 48 items—see Figure 3 (right). Contrarily to EvoStick,
Vanilla and Chocolate produce control software that behaves similarly in Mx

and My: the robots randomly explore the arena and, as soon as they encounter
one of the food sources, they navigate towards the light to reach the nest.
Chocolate performs significantly better than Vanilla because the instances
of control software it produces only explore the gray area of the arena: while
searching for a food source, robots do not enter the nest. This increases the rate
at which food sources are found. The performance drop experienced by Vanil-

la and Chocolate is at most 1 item—see Figure 3 (right). Videos illustrating
the typical behaviors displayed by the control software generated by the three
methods are available as supplementary material (Ligot and Birattari 2019).

The results also show a positive correlation between the performance drop
experienced in pseudo-reality and the performance assessed on the design
model—see Figure 4. This holds true for the three methods. Nonetheless,
some difference should be noticed. For EvoStick and in the two missions,
observations are concentrated in the top left quarter, which indicates a high
performance on Mx, but a large performance drop. On the other hands, for
Vanilla and Chocolate, the observations are close to the center of the fig-
ure, which indicates a relatively lower performance on Mx with respect to the
one of EvoStick, but a performance drop that is centered around zero. For
both missions, the cloud of observations for Chocolate is shifted to the right
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Fig. 4 Correlation between performance drop experienced in pseudo-reality and perfor-
mance assessed in Mx. The gray level of a point indicates its frequency of observation:
the darker, the higher the frequency. All correlations are significantly different from 0 with
confidence of at least 95%. For aggregation, the organization of the points in columns is
due to the quantum of Fa equal to 0.05 = 1/20, which corresponds to a difference of one
robot, out of the twenty comprised in the swarm, on the most populated black zone—see
Section 3.3.1.

with respect to the one of Vanilla as Chocolate obtains a relatively higher
performance.
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5 Experiment 2: design model is fixed, pseudo-reality is sampled

In this experiment, we address question Q2: we evaluate automatically gener-
ated control software on a range of pseudo-realities. In Section 4, we were able
to find, by trial and error, a pseudo-reality that produced a performance drop
and rank inversion that are similar to those previously observed when evalu-
ating automatically generated control software on physical robots (Francesca
et al. 2014). Here, we investigate whether the above only holds for that specific
pseudo-reality, or whether it is a more general fact holding for multiple pseudo-
realities. To do so, we use several pseudo-realities to assess the performance of
control software generated on the basis of MA, with each pseudo-reality being
a model uniformly sampled from a predefined set of models. In other words,
we create multiple artificial reality gaps between pairs of models: MA and a
randomly sampled one. Because some of the sampled models might be too
similar to MA to yield a noticeable performance drop, we do not expect that
every single model sampled can be used by itself as a pseudo-reality on which
we can observe results analogous to those observed in the first experiment.
Nonetheless, we expect that, by evaluating control software on a sufficiently
large number of such models, and by aggregating the results across all of them,
we could obtain a correct overall picture of which methods are more likely to
suffer from a performance drop and of whether a rank inversion should be
expected.

Furthermore, we propose multiple measures to quantify the width of the
artificial reality gap between a pair of models. By width of a reality gap, we
mean some measure of the difference between the model on which control soft-
ware is designed and the (pseudo-)reality in which it is evaluated. Eventually,
our long-term goal would be to have a measure of this width that has pre-
dictive capability: this measure should allow one to predict the performance
drop that a given design method would experience when crossing a reality gap
of that width. Because all models considered in this paper differ only by the
values of five parameters, each model is fully identified by a vector in a five
dimensional space. Under this condition, we conjecture that the width of an
artificial reality gap can be quantified by an appropriate distance measure be-
tween the vectors that identify the models involved in the artificial reality gap
itself. We consider a number of distance measures between two vectors and
the difference of a number of vector norms. We study their Pearson correla-
tion with the performance drop experienced when designing control software
on the model identified by one of the two vectors and evaluating it on the
model identified by the other one.

In the following, we describe the set of models from which the pseudo-
realities are sampled, detail the protocol followed, define the measures of dif-
ference between models, and report and discuss the results.

Models. Model MA was used by Francesca et al. (2014) and in the previous
experiment. Model MB is sampled from a predefined set of models that we
conceived such that (i) it comprises both model MA and the model MB used
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Table 4 Ranges of possible values for the model MB . The values of model MA are reported
here for reference. See caption of Table 3 for a description of the parameters.

sensor/actuator ranges for MB MA

proximity [0.00, 0.10] 0.05

light [0.00, 1.50] 0.05

ground [0.00, 0.10] 0.05

range-and-bearing [0.70, 1.00] 0.85

wheels [0.00, 0.20] 0.05

in the first experiment, and (ii) it contains models that are more noisy than MA

and models that are less noisy. The set of models from which MB is sampled
is given in Table 4, together with the parameters of MA, which are repeated
here for the convenience of the reader.

Protocol. We consider two stages: SAB and SBA. In stage SAB , an instance of
control software is automatically generated on the basis of model MA, and it is
evaluated on MA itself and on a pseudo-reality: a model MB that is uniformly
sampled from the range defined in Table 4. This process is repeated 20 times,
which therefore results in the generation of 20 instances of control software
on the basis of MA and in the sampling of 20 models MB . In stage SBA, the
same 20 models MB sampled in stage SAB are used to automatically generate
control software which is then evaluated on MB itself and on a pseudo-reality,
whose role here is played by MA.

We consider the missions aggregation and foraging and two design
methods: EvoStick and Chocolate. In this second experiment, we drop Va-

nilla because the first experiment showed that its results are very similar
to those of Chocolate, which performs slightly better. Each design process is
granted a design budget of 200 000 simulation runs. The 20 uniformly sampled
models MB are the same in each stage, for each mission, and for each automatic
design method.

Measuring the width of an artificial reality gap. As we consider models
that are fully and uniquely identified by five noise parameters, they can be
represented as vectors in the five dimensional space. In this space, for a generic
vector v, we consider its norms `1, `2, and `∞, where

`n = ‖v‖n = n

√√√√ 5∑
i=1

|vi|n.

In the case of the `∞ norm, by taking the limit of the above, we have `∞ =
maxi |vi|. Because each component of a vector defines the amount of simulation
noise concerning a specific sensor or actuator, the higher the norm, the higher
the overall amount of simulation noise.
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As possible measures of the width between two models MA and MB , we
consider the differences ‖b‖n−‖a‖n between the `n norm of their correspond-
ing vectors a and b, with n ∈ {1, 2,∞}. Moreover, we consider the `n norm
of their difference ‖b− a‖n, also with n ∈ {1, 2,∞}. Differences of norms can
be negative, with a negative value indicating that the evaluation model is less
noisy than the design one. Moreover, differences of norms are anticommuta-
tive: the width of the gap from MA to MB and the one from MB to MA have the
same absolute value but opposite sign. It should be noted that a null value of
a difference of norms does not ensure that the two models are identical. This is
a weakness of differences of norms as a measure of the width of the reality gap
because one would expect that a zero measure indicates that the gap is null
and therefore design and evaluation models are the same. On the other hand,
norms of difference are non-negative and commutative: the larger the norm,
the wider the gap; and the width of the gap from MA to MB and the one from
MB to MA are equal. As an alternative to measuring the width of an artificial
reality gap, one could measure how similar the design and evaluation models
are. For example, this could be done using the cosine similarity of models a
and b: ∑

i aibi√∑
i a

2
i

√∑
i b

2
i

.

The cosine similarity is commutative and, in a positive space such as the one
considered here, is bounded between 0 and 1: zero indicates that the two
vectors are orthogonal, a one indicates that they have the same orientation.
Hence, the lower the cosine similarity, the wider the (pseudo-)reality gap.

For all the aforementioned measures, we consider both the unnormalized
and normalized versions. We normalize each term vi of a vector v with respect
to the lower and upper bounds of its range—Li and Ui, respectively. Ranges
are given in Table 4. In particular, when a vector m = {m1, ...,m5} represents
a model, it is normalized into a vector m = {m1, ...,m5} where:

mi =
mi − Li

Ui − Li
for i ∈ {1, ..., 5}. (1)

Each component of m ranges therefore between 0 and 1. When a vector d
represents a difference b− a, it is normalized into d where:

di =


bi − ai
Ui − ai

, if bi >= ai;

bi − ai
ai − Li

, if bi < ai;

for i ∈ {1, ..., 5}. (2)

Each component of d ranges therefore between -1 and 1.

Results. In both stages and for both missions considered, a rank inversion
occurred between EvoStick and Chocolate—see Figure 5 and 6. Indeed, the
control software generated by EvoStick performs significantly better than the
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Fig. 5 Results for aggregation. Narrow boxes represent the performance assessed on the
model used as design context; wide boxes represent the performance assessed in pseudo-
reality. Gray boxes represent performance assessed on model MA; white boxes represent
performance assessed on model MB .
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Fig. 7 Pearson correlation between performance drop and difference of `1 norms of the
models used for design and evaluation. Performance drop is aggregated across stages SAB

and SBA. Boldface values indicate that the correlation is significantly different from 0 with
confidence of at least 95%.

one of Chocolate when the evaluation is performed on the design model, but
the one of Chocolate performs significantly better than that of EvoStick

when the evaluation is performed in pseudo-reality.
Concerning the correlation between performance drop and the width of

the artificial reality gap, all measures we considered, both in the normalized
and unnormalized versions, provided similar results. In the following, we only
report the results concerning the unnormalized version of the `1 norm of dif-
ference, the difference of `1 norms, and the cosine similarity because trends
are more apparent there. The remaining results are reported as supplemen-
tary material (Ligot and Birattari 2019). Figures 7 and 8 show the correlation
between the performance drop—aggregated across stages SAB and SBA—and
the difference of norms and the norm of differences. In all figures, a dispar-
ity can be noticed between the performance drop experienced by EvoStick
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Fig. 8 Pearson correlation between performance drop and `1 norm of the difference between
models used for design and evaluation. See caption of Figure 7 for more details.

and Chocolate: for EvoStick, most of observations are above the zero-drop
line; for Chocolate they are more equally spread above and below. Moreover,
the results for aggregation fail to show a clear trend. For foraging, dif-
ferences of norms display a V-shape pattern. This is particularly evident for
EvoStick—see Figure 7 (bottom left). This is possibly due to the anticom-
mutative nature of the measure. Because of the V-shape pattern, the Pearson
correlation fails to be informative on the actual correlation between width of
the reality gap and performance drop. Nonetheless, the difference of norms
has some merits as it highlights an interesting fact: for EvoStick, the perfor-
mance drop grows with the absolute value of the width. In particular, we can
observe that for negative width—that is, when the evaluation model is less
noisy than the design one—we register a noticeable performance drop. This
further corroborates our conjecture that performance drop is to be explained
as a sort of overfitting of the conditions experienced during the design, rather
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Fig. 9 Pearson correlation between performance drop and cosine similarity between models
used for design and evaluation. See caption of Figure 7 for more details.

than as the result of evaluating in a complex (pseudo-)reality control software
that has been designed on the basis of a simplistic simulation model.

Norms of differences, which are commutative and effectively fold negative
widths onto positive ones, highlight a correlation between width of the reality
gap and performance drop—see Figure 8 (bottom). Pearson correlation is sig-
nificant both for EvoStick and Chocolate, but is larger for EvoStick. Also
the cosine similarity highlights a correlation between width of the reality gap
and performance drop—more precisely, a negative correlation between similar-
ity of the design and evaluation models and performance drop—see Figure 9
(bottom). In this case, the Pearson correlation is significant only for EvoStick.

All in all, norms of differences and the cosine similarity appear to be the
most appropriate choices among those we explored to measure the width of a
(pseudo-)reality gap.
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6 Conclusions

In the paper, we shed light on one of the most challenging issues in off-line au-
tomatic design of control software for robot swarms: the reality gap. Because of
the reality gap, evaluation on physical robots is the only conclusive way of as-
sessing the performance of an instance of control software. Nonetheless, tests
with real hardware are time consuming, expensive, and possibly dangerous.
Therefore, it would be highly desirable to have a simulation-only procedure
that could provide reliable estimations of real-world performance. Such a pro-
cedure would greatly benefit off-line fully-automatic, semi-automatic (human-
in-the-loop), and manual design. In particular, in the case of fully-automatic
design, such evaluation procedure could contribute to handle the so-called
overdesign: it has been shown that, past an optimal number of steps of the de-
sign process, the performance observed in reality diverges from the one in sim-
ulation (Birattari et al. 2016). As a consequence, protracting a design process
indefinitely could be counterproductive. A simulation-only evaluation proce-
dure could be used to implement an early stopping mechanism that halts the
design process when overdesign have occurred (Morgan and Bourlard 1990;
Caruana et al. 2001). In the case of semi-automatic design (human-in-the-
loop), designers could use the fast and relatively inexpensive estimations of a
simulation-only procedure to inspect the control software produced and to gain
insight into its strengths and weaknesses. The information gathered could be
used to steer the design process towards better control software. For example,
designers could fine-tune hyperparameters of the optimization algorithm, add
terms to the objective function to reward or penalize elements of the swarm
behavior, or adjust simulation models to increase the robustness to the reality
gap. A simulation-only procedure could benefit also a manual design process
as it has been shown that, under some conditions, also human designers are
prone to produce control software that is negatively affected by the reality
gap (Francesca et al. 2015).

The results presented in this paper suggest that a simulation-only evalu-
ation procedure can possibly be developed leveraging the notion of pseudo-
reality as intended in the experiment of Section 5: (i) a range of models could
be defined around the one used for the design, and (ii) each instance of control
software generated by the design method under analysis could be evaluated on
several models that are uniformly sampled from the defined range. The perfor-
mance across such several models would provide information on the intrinsic
robustness of the control software produced by the method at hand, and could
be beneficial to the design in the various ways highlighted above.

Although in the paper we considered only models that differ by sensor and
actuator noise, other ways could be conceived to generate a range of models to
be used as a pseudo-reality. For example, one could change the distribution of
noise, add an offset to noise or other parameters of the model, or completely
modify the structure of the model. Further research is needed to assess these
ideas and possibly devise more appropriate ones.
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